Korean J. Math. **26** (2018), No. 4, pp. 701–708 https://doi.org/10.11568/kjm.2018.26.4.701

GENERALIZED NORMALITY IN RING EXTENSIONS INVOLVING AMALGAMATED ALGEBRAS

Tae In Kwon^{\dagger} and Hwankoo Kim^{*}

ABSTRACT. In this paper, seminormality and t-closedness in ring extensions involving amalgamated algebras are studied. Let $R \subseteq T$ be a ring extension with ideals $I \subseteq J$, respectively such that J is contained in the conductor of R in T. Assume that T is integral over R. Then it is shown that $(R \bowtie I, T \bowtie J)$ is a seminormal (resp., t-closed) pair if and only if (R, T) is a seminormal (resp., t-closed) pair.

1. Introduction

All rings considered here are assumed to be commutative rings with identity. First, we recall some definitions and properties.

1. Let $R \subseteq T$ be an extension of commutative rings. Then we say that R is seminormal (resp., t-closed) in T if an element $t \in T$ is in R whenever $t^2, t^3 \in R$ (resp., whenever there exists r in R such that $t^2 - rt, t^3 - rt^2 \in R$). Also we say that (R, T) is a normal (resp., seminormal, t-closed) pair if, for each ring C between R and T (R and T included), C is integrally closed (resp., seminormal, t-closed) in T. Clearly every normal pair is a t-closed pair and every t-closed pair is a seminormal pair [9, Proposition 1.3].

Received September 8, 2018. Revised December 4, 2018. Accepted December 5, 2018.

²⁰¹⁰ Mathematics Subject Classification: 13F45, 13B10, 13B22.

Key words and phrases: semi normal (pair); *t*-closed (pair); amalgamated algebra. † This research was supported by Changwon National University in 2017–2018. *Corresponding author.

[©] The Kangwon-Kyungki Mathematical Society, 2018.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Tae In Kwon and Hwankoo Kim

2. A commutative ring R is called *seminormal* (resp. *t-closed*) if, whenever $(a, c) \in R^2$ satisfies $a^3 = c^2$, there exists $b \in R$ such that $b^2 = a$ and $b^3 = c$ (resp., whenever $(a, r, c) \in R^3$ satisfies $a^3 + arc - c^2 = 0$, there exists $b \in R$ such that $b^2 - rb = a$ and $b^3 - rb^2 = c$).

The concepts of seminormality and t-closedness were introduced and studied in various contexts in [10] and [6] respectively, and further investigated in much literature, for example [4, 5, 7–9, 11].

On the other hand, in [2], the authors introduced the concept of amalgamated algebras along an ideal as follows. Let R and T be commutative rings with identity, let J be an ideal of T, and let $f : R \to T$ be a ring homomorphism. In this setting, they defined the following subring of $R \times T$:

$$R \bowtie^f J = \{ (r, f(r) + j) \mid r \in R, j \in J \}$$

called the amalgamation of R with T along J with respect to f. Other classical constructions (such as the A + XB[X] construction, the D + Mconstruction, and the Nagatas idealization) can be studied as particular cases of the amalgamation. Recently, in [5], the author defined the more general construction with algebras rather than ideals. Let J be an f(R)subalgebra of T. Then $R \bowtie^f J = \{(r, f(r)+j) \mid r \in R, j \in J\}$ is referred to as a general bowtie ring, or a general bowtie extension of R. Then, among other things, he considered integrality of extensions of bowtie rings.

Our primary focus of this paper will be investigating seminormality and t-closedness in ring extensions of the form $R \bowtie^f I \subset T \bowtie^f J$, where $f: T \to T'$ is a ring homomorphism, I is an f(R)-subalgebra of T', and J is an f(T)-subalgebra of T' with $I \subseteq J$.

2. Main results

Let $R \subseteq T$ be a ring extension, $f: T \to T'$ a ring homomorphism, Ian f(R)-subalgebra of T', and J an f(T)-subalgebra of T' with $I \subseteq J$. It is shown that $R \bowtie^f I$ is integrally closed in $T \bowtie^f J$ if and only if Ris integrally closed in T, f(R) + I is integrally closed in f(R) + J, and $J \cap (f(R) + I) = I$ [5, Theorem 6.1.10]. The following result is an analog of this result.

Generalized normality

PROPOSITION 2.1. Let $R \subseteq T$ be a ring extension, $f: T \to T'$ a ring homomorphism, I an f(R)-subalgebra of T', and J an f(T)-subalgebra of T' with $I \subseteq J$. Then $R \bowtie^f I$ is seminormal (resp., t-closed) in $T \bowtie^f J$ if and only if R is seminormal (resp., t-closed) in T and f(R) + Iis seminormal (resp., t-closed) in f(R) + J.

Proof. The "t-closed" case can be proved similarly to that of the "seminormal" case. Thus we only prove the "seminormal" case.

(⇐) Assume that R is seminormal in T and f(R) + I is seminormal in f(R) + J. Let $(t, f(t) + j) \in T \bowtie^f J$ $(t \in T, j \in J)$ such that $(t, f(t) + j)^2, (t, f(t) + j)^3 \in R \bowtie^f I$. Then $(t^2, (f(t) + j)^2), (t^3, (f(t) + j)^3) \in R \bowtie^f I$. Thus $t^2, t^3 \in R$, and so $t \in R$ since R is seminormal in T. Also we have $f(t) + j \in f(R) + J$. Since $(f(t) + j)^2, (f(t) + j)^3 \in f(R) + I$, we have $f(t) + j \in f(R) + I$ since f(R) + I is seminormal in f(R) + J.

(⇒) Assume that $R \bowtie^f I$ is seminormal in $T \bowtie^f J$. Let $t \in T$ such that $t^2, t^3 \in R$. Then $(t, f(t)) \in T \bowtie^f J$ such that $(t, f(t))^2, (t, f(t))^3 \in R \bowtie^f I$. Thus by hypothesis, $(t, f(t)) \in R \bowtie^f I$, and so $t \in R$. Therefore, R is seminormal in T. Now let $f(r) + j \in f(R) + J$ $(r \in R, j \in J)$ such that $(f(r)+j)^2, (f(r)+j)^3 \in f(R)+I$. Then $(r, f(r)+j)^2, (r, f(r)+j)^2 \in R \bowtie^f I$. By hypothesis, $(r, f(r)+j) \in R \bowtie^f I$, and so $f(r) + j \in f(R) + I$. Therefore, f(R) + I is seminormal in f(R) + J. \Box

Note that the extension $R \bowtie^f I \subset T \bowtie^f J$ generalizes ring extensions of the form $R \bowtie I \subset T \bowtie J$ (which belong to the special case where T = T' and f is simply the identity map). Thus we have the following result.

COROLLARY 2.2. Let $R \subseteq T$ be a ring extension with ideals $I \subseteq J$, respectively. Then $R \bowtie I$ is seminormal (resp., t-closed) in $T \bowtie J$ if and only if R is seminormal (resp., t-closed) in T.

Proof. This follows from Proposition 2.1 and the fact that "*R* is seminormal (resp., *t*-closed) in *T*" implies that "R + I (= R) is a seminormal (resp., *t*-closed) in $R + J (\subseteq T)$ ".

We say that R is a *decent ring* (also called *complemented*) if the total ring of quotients of R, denoted by Tot(R), is a von Neumann regular ring (also called an absolutely flat ring). Recall from a comment after [10, Corollary 3.4] that for a decent ring R, by saying R is seminormal (resp., *t*-closed) we mean that R is seminormal (resp., *t*-closed) in Tot(R). Now we have an immediate application of Corollary 2.2. COROLLARY 2.3. Let R be a decent ring and I be an ideal of R. Then $R \bowtie I$ is seminormal (resp., t-closed) if and only if R is seminormal (resp., t-closed).

Proof. It is enough to show that $R \bowtie I$ is a decent ring. This follows from two facts that (1) $\operatorname{Tot}(R \bowtie I)$ is canonically isomorphic to $\operatorname{Tot}(R) \bowtie I \operatorname{Tot}(R)$ [5, Theorem 5.3.3] and (2) for a proper ideal J of a commutative ring $A, A \bowtie J$ is a von Neumann regular ring if and only if A is a von Neumann regular ring [1, Theorem 2.1].

It was shown that if T is von Neumann regular and is integral over a subring R, then (R, T) is a seminomal pair [11, Lemma 1.4]. In what follows we will consider seminormal (resp., *t*-closed) pairs in extensions of bowtie rings.

PROPOSITION 2.4. Let $R \subseteq T$ be a ring extension with ideals $I \subseteq J$, respectively. Assume that T is integral over R and T is von Neumann regular. Then $(R \bowtie I, T \bowtie J)$ is a seminormal pair.

Proof. Recall that $R \bowtie I \subset T \bowtie J$ is integral if and only if $R \subset T$ is integral [5, Corollary 6.1.2]. Now the assertion follows from [1, Theorem 2.1] and [11, Lemma 1.4].

LEMMA 2.5. Let $R \subseteq T$ be a ring extension, $f : T \to T'$ a ring homomorphism, I an f(R)-subalgebra of T', and J an f(T)-subalgebra of T' with $I \subseteq J$. If $(R \bowtie^f I, T \bowtie^f J)$ is a seminormal (resp., t-closed) pair, then (R, T) is a seminormal (resp., t-closed) pair.

Proof. The "t-closed" case can be proved similarly to that of the "seminormal" case. Thus we only prove the "seminormal" case.

Assume that $(R \bowtie^f I, T \bowtie^f J)$ is a seminormal pair. If (R, T) is not a seminormal pair, then there exists an intermediate ring S (possibly R itself) and a $t \in T \setminus R$ which satisfies $t^2, t^3 \in S$. Note that $S \bowtie^f J = \{(s, f(s) + j) \mid s \in S, j \in J\}$ is a ring lying between $R \bowtie^f I$ and $T \bowtie^f J$. Further, the element $(t, f(t)) \in T \bowtie^f J \setminus S \bowtie^f J$ satisfies $(t, f(t))^2, (t, f(t))^3 \in S \bowtie^f J$, contradicting that $S \bowtie^f J$ is seminormal in $T \bowtie^f J$ by hypothesis.

Let $R \subseteq T$ be an extension of commutative rings with (the same) identity. Consider the following conditions:

(a) T is integral over R.

(b) $\operatorname{Spec}(T) \longrightarrow \operatorname{Spec}(R)$ is a bijection.

(c) The residue field extensions are isomorphisms, i.e., for each $Q \in$ Spec(T) the extension $R_P/PR_P \hookrightarrow T_Q/QR_Q$ is an isomorphism, where $P = Q \cap R$.

We recall some special extensions satisfying two or three conditions above including the condition (a).

- 1. R. G. Swan called the extension $R \subseteq T$ subintegral if (a), (b) and (c) are satisfied [10].
- 2. G. Picavet and M. Picavet-L'Hermitte called the extension $R \subseteq T$ infra-integral if (a) and (c) are satisfied [7].

LEMMA 2.6. Let $R \subseteq T$ be an integral extension of commutative rings. Then (R,T) is a seminormal (resp., t-closed) pair if and only if (R_P,T_P) is a seminormal (resp., t-closed) pair for all maximal ideals Pof R.

Proof. Recall that for every multiplicatively closed subset S of a ring A, any intermediate ring for an extension $A_S \subseteq B_S$ of rings has the form C_S , for a suitable ring C between A and B (cf., [9, Proposition 1.5]). Thus the necessity follows from the fact that being seminormal (resp., *t*-closed) is stable under localization, while the sufficiency follows from the fact that localization preserves subintegrality (resp., infra-integrality) [10, Corollary 2.10] (resp., [7, Proposition 1.16]).

In [4, Proposition 4.3], it is shown that for a decent ring R and an ideal J of an extension ring T of R with $I := J \cap R$, if (R, T) is a normal pair, then $(R \bowtie I, T \bowtie J)$ is a normal pair.

PROPOSITION 2.7. Let $R \subseteq T$ be a ring extension with ideals $I \subseteq J$, respectively such that $J \subseteq (R :_R T)$. Assume that T is integral over R. Then $(R \bowtie I, T \bowtie J)$ is a seminormal (resp., t-closed) pair if and only if (R, T) is a seminormal (resp., t-closed) pair.

Proof. The "t-closed" case can be proved similarly to that of the "seminormal" case. Thus we only prove the "seminormal" case.

Assume that (R, T) is a seminormal pair. By Lemma 2.6, it suffices to show that $R \bowtie I$ is locally seminormal in $T \bowtie J$. Let $Q \in \operatorname{Spec}(R \bowtie I)$ and set $P := Q \cap R$.

Case 1: $I \nsubseteq P$. By [4, Proposition 4.2(b)], we have $(R \bowtie I)_Q \cong R_P$ and $(T \bowtie J)_{(R \bowtie I)\setminus Q} \cong T_{R\setminus P}$. Thus $((R \bowtie I)_Q, (T \bowtie J)_{(R \bowtie I)\setminus Q})$ can be identified with the seminormal pair $(R_P, T_{R\setminus P})$. Tae In Kwon and Hwankoo Kim

Case 2: $I \subseteq P$. By [4, Proposition 4.2(a)], we have $(R \bowtie I)_Q \cong R_P \bowtie I_P$ and $(T \bowtie J)_{(R\bowtie I)\setminus Q} \cong T_{R\setminus P} \bowtie J_{R\setminus P}$. Since J is contained in the conductor ideal of R in T, $J_{R\setminus P}$ is an ideal of R_P . Since $(R_P, T_{R\setminus P})$ is a seminormal pair, we can apply [7, Theorem 3.15] to show that $(R_P \bowtie I_P, T_{R\setminus P} \bowtie J_{R\setminus P})$ is a seminormal pair. This completes the proof that $R \bowtie I$ is locally seminormal in $T \bowtie J$, as required.

The converse follows from Lemma 2.5.

If we refine the assumption $I \subseteq J$ by requiring that J = I, we are able to strengthen the result by removing the restriction that $J \subseteq (R :_R T)$ and $R \subseteq T$ be integral. In fact, we can give this result, which is an analog of [5, Theorem 6.2.4.], in the context of general bowtie rings.

PROPOSITION 2.8. Let $R \subseteq T$ be a ring extension, $f : T \to T'$ a ring homomorphism, and J an f(T)-subalgebra of T'. Then $(R \bowtie^f J, T \bowtie^f J)$ is a seminormal (resp., t-closed) pair if and only if (R, T) is a seminormal (resp., t-closed) pair.

Proof. Assume that (R, T) is a seminormal (resp., t-closed) pair. By [5, Lemma 3.2.13], every ring between $R \bowtie^f J$ and $T \bowtie^f J$ is of the form $S \bowtie^f J$ for some ring $R \subseteq S \subseteq T$. Assume that (R, T) is a seminormal (resp., t-closed) pair. Then for each intermediate ring S, S is seminormal (resp., t-closed) in T. By Proposition 2.1, $S \bowtie^f J$ is seminormal (resp., t-closed) in $T \bowtie^f J$.

The converse follows immediately from Lemma 2.5.

Now we end this paper by generating new related examples in the context of extensions of bowtie rings. As usual we denote by \mathbb{C} the field of complex numbers.

EXAMPLE 2.9. Let $T := \mathbb{C}[X, Y]$, where X, Y are indeterminates over \mathbb{C} .

- 1. Let $R := \mathbb{C}[X^2, Y, XY]$. Then it was shown that R is *t*-closed in T [7, Example 3.13] and R is a *t*-closed ring [8, Example 3.1]. Also note that (R, T) is not a *t*-closed pair since $\mathbb{C}[X^2, X^3, Y, XY]$ is not *t*-closed in T [7, Example 3.13]. Clearly T is integral over R. Now take $I := (X^2, XY)R$ and J := (X)T. Then by Corollary 2.2, $R \bowtie I$ is seminormal (resp., *t*-closed) in $T \bowtie J$.
- 2. Let M, N be two distinct maximal ideals of T and let $R := \mathbb{C} + (M \cap N)$. Then it was shown that T is integral over R and (R, T) is a seminormal pair but not a *t*-closed pair [11, Example 3.1].

Now take $J := M \cap N = MN$, the conductor of R in T, and take a nonzero proper subideal I of J. Then by Proposition 2.7, $(R \bowtie I, T \bowtie J)$ is a seminormal pair but not a *t*-closed pair.

Acknowledgements

We would like to thank the referee for her/his valuable comments.

References

- M. Chhiti and N. Mahdou, Some homological properties of amalgamated duplication of a ring along an ideal, Bull. Iranian Math. Soc. 38 (2012), 507–515.
- [2] M. D'Anna, C.A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in: M. Fontana, S. Kabbaj, B. Olberding, I. Swanson, editors. Commutative Algebra and Its Applications. Berlin, Walter de Gruyter, 2009, pp. 241–252.
- [3] M. D'Anna, C.A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), 1633–1641.
- [4] D. Dobbs and J. Shapiro, Normal pairs with zero-divisors, J. Algebra Appl. 10 (2011), 335–356.
- [5] T.S. Long, *Ring Extensions Involving Amalgamated Duplications*, Ph.D. Thesis, George Mason university, 2014.
- [6] N. Onoda, T. Sugatani, and K. Yoshida, Local quasinormality and closedness type criteria, Houston J. Math. 11 (1985), 247–256.
- [7] G. Picavet and M. Picavet-L'Herniitte, *Morphismes t-clos*, Commun. Algebra, 21 (1993), 179–219.
- [8] G. Picavet and M. Picavet-L'Herniitte, Anneaux t-clos, Commun. Algebra, 23 (1995), 2643–2677.
- [9] M. Picavet-L'Hermitte, t-closed pairs, in: P.-J. Cahen, M. Fontana, E. Houston, S.-E. Kabbaj, editors. Commutative Ring Theory. Lect. Notes Pure Appl. Math. 185, New York, Dekker, 1996, pp. 401-415.
- [10] R.G. Swan, On seminormality, J. Algebra 67 (1980), 210–229.
- [11] S. Visweswaran, Some t-closed pairs, Commun. Algebra 29 (10) (2001), 4425– 4435.

Tae In Kwon and Hwankoo Kim

Tae In Kwon

Department of Mathematics Changwon National University Changwon 51140, Republic of Korea *E-mail*: taekwon@changwon.ac.kr

Hwankoo Kim

Division of Computer & Information Engineering Hoseo University Asan 31499, Republic of Korea *E-mail*: hkkim@hoseo.edu