ON STRONG METRIC DIMENSION OF ZERO-DIVISOR GRAPHS OF RINGS

M. Imran Bhat and Shariefuddin Pirzada*

Abstract

In this paper, we study the strong metric dimension of zero-divisor graph $\Gamma(R)$ associated to a ring R. This is done by transforming the problem into a more well-known problem of finding the vertex cover number $\alpha(G)$ of a strong resolving graph $G_{s r}$. We find the strong metric dimension of zero-divisor graphs of the ring \mathbb{Z}_{n} of integers modulo n and the ring of Gaussian integers $\mathbb{Z}_{n}[i]$ modulo n. We obtain the bounds for strong metric dimension of zero-divisor graphs and we also discuss the strong metric dimension of the Cartesian product of graphs.

1. Introduction

Let $G(V, E)$ be a simple graph with vertex set $V(G)$ and edge set $E(G)$. The set of vertices adjacent to a vertex $v \in V(G)$ is the neighborhood of v and is denoted by $N(v)$. Further $N[v]=N(v) \cup\{v\}$. The degree of v, denoted by $d_{G}(v)$, or more simply we write $d(v)$ means the cardinality of $N(v)$. If the two vertices u and v are adjacent, we denote it by u adj v. A graph is regular if each of its vertex has the same degree. A path between two vertices $x_{1}, x_{n} \in V(G)$ is an ordered sequence of distinct vertices $x_{1}, x_{2}, \ldots, x_{n}$ of G such that $x_{i-1} x_{i}$ is an edge for

[^0]$2 \leq i \leq n$. A closed path is a cycle. In G, the distance between two vertices x and y, denoted by $d(x, y)$, is the length of the shortest $x-y$ path in G. If there is no such path, we define $d(x, y)=\infty$. We say that G is connected if there exists a path between every pair of vertices in G. A graph that contains no cycles is called a tree. A cut vertex of a connected graph is a vertex whose removal results in a graph having two or more connected components. The diameter of a graph G is $\operatorname{diam}(G)=\sup \{d(x, y) \mid x$ and y are distinct vertices of $G\}$. A clique is a maximal complete subgraph and the cardinality of its vertex set, denoted by $\omega(G)$, is called the clique number of G. In a graph G, a set $S \subset V(G)$ is an independent set if the subgraph induced by S is totally disconnected. We denote the complete graph on n vertices by K_{n} and the complete bipartite graph on m and n vertices by $K_{m, n}$. We will sometimes call a $K_{1, t}$ a star graph. A vertex u of G is maximally distant from v if for every vertex $w \in N(u), d(u, v) \geq d(v, w)$. If v is also maximally distant from u, then we say that u and v are mutually maximally distant and denote this by $u M M D v$. Also boundary of $G(V, E)$ is defined as $\partial(G)=\{u \in V$: there exists $v \in V$ with $u M M D v\}$. A set T of vertices of G is a vertex cover of G if every edge of G is incident with at least one vertex of T. The vertex cover number of G, denoted by $\alpha(G)$, is the cardinality of smallest vertex cover of G. For basic definitions, we refer the reader to any standard graph theory book, such as [17,26].

The idea of associating a graph to a ring is due to Beck [11], in which the author is primarily concerned with colorings. In [5], Anderson and Livingston defined the zero-divisor graph of a commutative ring R, denoted $\Gamma(R)$, to be the graph whose vertices are the nonzero zerodivisors of R, and in which x and y are connected by an edge if $x y=0$. Since then, there have been many papers written on the subject of zerodivisor graphs and and their variants (of which there are many). The interrelation between the ring-theoretic structure of R and the graphtheoretic structure of $\Gamma(R)$ has brought out interesting results from the perspective of both algebra and graph theory (cf. [2, 4-6], for example). Zero-divisor graphs were initially defined for commutative rings and later the concept of zero-divisor graphs was generalized to non-commutative rings by Redmond [21] and to the modules (see for example [10]). The concept widened the scope of this research area and many other graphs have been defined like total graphs, co-maximal graphs, unit graphs, Jacobson graphs, ideal based zero-divisor graphs, zero-divisor graphs of
equivalence classes (cf. [1, 3, 7, 9, 22, 25]). For basic definitions, we refer the reader to $[8,15]$.

Throughout, unless otherwise stated, R denotes a finite commutative ring with $1 \neq 0$, the set of all non-zero zero-divisors of R is denoted by $Z^{*}(R)=Z(R) \backslash\{0\}$. A finite field on q number of elements is denoted by \mathbb{F}_{q} and the ring of integers modulo n is denoted by Z_{n}. A $\operatorname{ring} R$ is a local ring if and only if R has a unique maximal ideal. An element $x \in R$ is nilpotent if $x^{n}=0$ for some $n \in \mathbb{N}$. A ring R is a reduced ring if it contains no non-zero nilpotent element. An annihilator of an element x of a ring R is defined as $\operatorname{ann}(x)=\{r \in R \mid r x=0\}$.

2. Metric dimension of some graphs

Harary and Melter [14] introduced the concept of metric dimension of graphs in the following way. Let G be a connected graph of order $n \geq 1$ and let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be an (ordered) set of vertices. The metric vector of a vertex $v \in G$ relative to W is the vector $r(v \mid W)=$ $\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)$. The set W is a resolving set of G if distinct vertices have distinct metric vectors and a minimum resolving set is called a metric basis for G and its cardinality, denoted by $\operatorname{dim}(G)$, is called the metric dimension of G. This invariant has been further studied by a number of authors, including [12,13,18-20].

The strong metric dimension of a graph is defined as follows. In a connected graph G, for two distinct vertices u and v, the interval $I[u, v]$ is the collection of all vertices that belong to some shortest $u-v$ path. A vertex $w \in V(G)$ strongly resolves two vertices u and v if $v \in I[u, w]$ or $u \in I[v, w]$. In other words, two vertices u and v are strongly resolved by w if $d(w, u)=d(w, v)+d(v, u)$ or $d(w, v)=d(w, u)+d(u, v)$. A set W of vertices is a strong resolving set of G if every two distinct vertices of G are strongly resolved by some vertex of W and a minimum strong resolving set is called a strong metric basis and its cardinality is the strong metric dimension of G, denoted by $\operatorname{dim}_{s}(G)$. If a vertex w strongly resolves u and v, it is easy to see that w also resolves these vertices. Hence every strong resolving set is a resolving set and $\operatorname{dim}(G) \leq \operatorname{dim}_{s}(G)$. In fact, $1 \leq \operatorname{dim}_{s}(G) \leq n-1$. Oellermann and Peters-Fransen [16] showed that the problem of finding the strong metric dimension of a graph G can be transformed into a more well-known problem of finding the vertex cover number $\alpha\left(G_{s r}\right)$ of a strong resolving graph denoted by $G_{s r}$ with vertex
set $V\left(G_{s r}\right)=\partial(G)$ and $u v \in E\left(G_{s r}\right)$ if and only if $u M M D v$ in G. We notice that every vertex of a strong resolving set is a boundary vertex.

Example 2.1. For positive integers m and n,
(i) $\left(K_{n}\right)_{s r}=K_{n}$
(ii) $\left(K_{m, n}\right)_{s r}=K_{m, n}$

Theorem 2.2. [16] For any connected graph G, $\operatorname{dim}_{s}(G)=\alpha\left(G_{s r}\right)$.
Now, we discuss the strong metric dimension of some useful graphs. We start with the following lemma.

Lemma 2.3. For a connected graph G of order $n \geq 1, \operatorname{dim}_{s}(G)=1$ if and only if $G \cong P_{n}$, where P_{n} is the path on n vertices. Moreover, the only end vertices belong to the strong resolving set.

Proof. Let $P_{n}:=u=v_{1}-v_{2}-\cdots-v_{n}=v$ be a path. To show $\operatorname{dim}_{s}(G)=1$, by Theorem 2.2, it is enough to prove that $V\left(\left(P_{n}\right)_{s r}\right)=$ $\partial\left(P_{n}\right)=\{u, v\}$, that is, u and v are the only $M M D$ vertices. First we show u and v are $M M D$. Clearly, $d(u, v) \geq d(v, w)$ for all $w \in N(u)$, implies u is maximally distant from v. Also, $d(v, u) \geq d(u, w)$ for all $w \in$ $N(v)$, implies v is maximally distant from u. Therefore, by definition $u M M D v$. Now, we show that there is no any other pair of vertices which are $M M D$. Let $v_{i}, v_{j} \in V(G)$ for $1<i, j \leq n-1$. We consider the following three cases.
Case 1. If v_{i} and u are adjacent, then $d\left(u, v_{i}\right)>d\left(v_{i}, w\right)$ for all $w \in N(u)$. But $d\left(v_{i}, u\right) \nsupseteq d(u, w)$ for all $w \in N\left(v_{i}\right)$, therefore v_{i} is not $M M D$ to u. Case 2. If v_{i} and u are not adjacent, then $d\left(v_{i}, u\right) \geq$ or $\leq d(u, w)$ for all $w \in N\left(v_{i}\right)$ and $d\left(u, v_{i}\right) \geq d\left(v_{i}, w\right)$ for all $w \in N(u)$, therefore v_{i} is not $M M D$ to u.
Case 3. Now, consider the vertices v_{i} and v_{j}, we observe that $d\left(v_{i}, v_{j}\right) \nsupseteq$ $d\left(v_{j}, w\right)$, for all $w \in N\left(v_{i}\right)$ and $d\left(v_{i}, v_{j}\right) \nsupseteq d\left(v_{i}, w\right)$, for all $w \in N\left(v_{j}\right)$, which implies that v_{i} is not $M M D v_{j}$.
Thus u and v are the only $M M D$ vertices in P_{n}. Hence, $\left(P_{n}\right)_{s r} \cong K_{2}$, implies that $\operatorname{dim}_{s}\left(P_{n}\right)=\alpha\left(P_{n}\right)_{s r}=1$.

On the other hand, let G be not a path, then either G is a tree (except path) or contains a cycle. Since in either case $\operatorname{dim}(G) \geq 2$ and hence $\operatorname{dim}_{s}(G) \geq 2$, as paths are the only graphs whose dimension is 1 , a contradiction.

Further, any vertex $v_{i}, 2 \leq i \leq n-1$ does not strongly resolve the end vertices $u=v_{1}$ and $v=v_{n}$ of P_{n}. Therefore, only the end vertex forms a strong metric basis.

The converse part also follows from the fact that $1 \leq \operatorname{dim}(G) \leq$ $\operatorname{dim}_{s}(G)$, implying $\operatorname{dim}(G)=1$. Therefore, by [[19], Lemma 2.1], $G \cong$ P_{n}.

Theorem 2.4. A connected graph G of order $n \geq 2$ has strong metric dimension $n-1$ if and only if $G \cong K_{n}$.

Proof. First, assume that $G \cong K_{n}$. Since $\operatorname{dim}(G) \leq \operatorname{dim}_{s}(G)$ and $\operatorname{dim}(G)=n-1$, it follows that $\operatorname{dim}_{s}(G) \geq n-1$. Also, by definition, $\operatorname{dim}_{s}(G) \leq n-1$. Combining, we have $\operatorname{dim}_{s}(G)=n-1$.

For the converse, assume that $\operatorname{dim}_{s}(G)=n-1$. Let $G^{\prime}=K_{n}-e$, where $e=u v$ is an edge and let $u u_{i} v$ be a path of length 2 in $G-e$. For the strong resolving set of $G-e$, we consider the following three cases. (i) $W_{1}=V(G) \backslash\{u, v\}$ (ii) $W_{2}=V(G) \backslash\left\{u_{i}, u_{j}\right\},(|V(G)| \geq 4)$ (iii) $W_{3}=V(G) \backslash\left\{u_{i}, u\right\}$ or $V(G) \backslash\left\{u_{i}, v\right\}$

Clearly, W_{1} is not a strong resolving set. If so, then $u \in I\left[u_{i}, v\right]$ or $v \in I\left[u, u_{i}\right]$, for any $u_{i} \in W_{1}$ which is not true as u_{i} adj v. Also W_{2} is not a strong resolving set, because neither $u_{i} \notin I\left[u, u_{j}\right]$ nor $u_{j} \notin I\left[u_{i}, u\right]$, because u adj u_{i}, u_{j}. So, W_{3} is a strong resolving set, where u_{i} and u are strongly resolved by v; and u_{i} and v are strongly resolved by u. Thus, $\operatorname{dim}_{s}(G-e) \leq n-2$. Therefore, $G \cong K_{n}$.

By using the fact $\left(K_{n}\right)_{S R}=K_{n}$ and Theorem 2.2, we note that $\operatorname{dim}_{s}(G)=n-1$ if $G \cong K_{n}$.

Proposition 2.5. For a graph $G, \operatorname{dim}(G)=\operatorname{dim}_{s}(G)$ if
(i) $G \cong P_{n}$.
(ii) $G \cong K_{n}$.

Theorem 2.6. For any complete bipartite graph $K_{m, n}, \operatorname{dim}_{s}\left(K_{m, n}\right)=$ $m-n-2$.

Proof. Consider a complete bipartite graph $G=K_{m, n}$ with partite sets $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let W be a strong resolving set of G. Then $W=W_{1} \cup W_{2}, W_{i} \subseteq V_{i},(i=1,2)$ with $\left|W_{1}\right|=m-1$ and $\left|W_{2}\right|=n-1$. We claim that $W=V(G) \backslash\left\{u_{m}, v_{n}\right\}$. For if, $W^{*}=V(G) \backslash\left\{u_{m}, v_{n}, u_{k}\right\}$ or $W^{*}=V(G) \backslash\left\{u_{m}, v_{n}, v_{k}\right\}$, then both do not form a strong metric basis of G. If $W^{*}=V(G) \backslash\left\{u_{m}, v_{n}, u_{k}\right\}$ forms a strong metric basis, then a pair of vertices u_{m} and u_{k} are not strongly resolved by any vertex of W^{*}. The same argument applies to the other case. Hence, W is a strong metric basis of G.

Definition 2.7. Two distinct vertices u and v of a connected graph G with $|V(G)| \geq 2$ are distance similar if $d(u, x)=d(v, x)$, for all $x \in$ $V(G) \backslash\{u, v\}$. It can be easily seen that two distinct vertices are distance similar if either $u v \notin E(G)$ and $N(u)=N(v)$ or $u v \in E(G)$ and $N[u]=$ $N[v]$.

Theorem 2.8. Let G be a connected graph whose vertex set is partitioned into k distinct distance similar classes $V_{1}, V_{2}, \ldots, V_{k}$ and m is the number of distance similar equivalence classes that consist of a single vertex. Then $|V(G)| \backslash k \leq \operatorname{dim}_{s}(G) \leq|V(G)|-k+m$.

Proof. Let $V(G)$ be partitioned into k distinct distance similar classes $V_{1}, V_{2}, \ldots, V_{k}$. Clearly, each $V_{i}, 1 \leq i \leq k$, is either an independent set or induces a complete subgraph of G. If W is a strong resolving set of G, then W contains all except one vertex in each of the equivalence class V_{i}, otherwise there exists a pair of vertices $u, v(u \sim v)$ not resolved by any vertex $w \in W$. Thus, $\operatorname{dim}_{s}(G) \geq|V(G)|-k$.

If W is a minimal strong resolving set for G, we prove that W contains at most $\left|V_{i}\right|-1$ vertices of $V_{i},\left|V_{i}\right|>1$. Without loss of generality, suppose that $\left|V_{1}\right|>1$ and W be a strong resolving set for G such that $V_{1} \subset W$. Let $x \in V_{1}$. We show that either (a) $W^{\prime}=W-\{x\}$ is a strong resolving set for G or (b) there exists an element $t \in V(G)-V_{1}$ such that $W^{*}=W^{\prime} \cup\{t\}=W \cup\{t\}-\{x\}$ is a strong resolving set for G. That is, W^{*} is a strong resolving set of cardinality no larger than W, where $V_{1} \subsetneq W$.

Define $W^{\prime}=W-\{x\}$ and without loss of generality, choose $W=$ $\left\{x, w_{1}, w_{2}, \ldots\right\}$ and $W^{\prime}=\left\{w_{1}, w_{2}, \ldots\right\}$. Let $u, v \in V(G)$. If both $u, v \in$ W^{\prime}, then clearly u and v are strongly resolved by a vertex of W^{\prime}, that is, for any $w \in W^{\prime}$ either $u \in I[w, v]$ or $v \in I[u, w]$. Again, if u or $v \in W^{\prime}$, then by definition, there exists some shortest $w-u$ path containing v or some shortest $w-v$ path containing u.

Suppose $u, v \notin W$. Then u and v are strongly resolved by a vertex of W. If u and v are not strongly resolved by a vertex of W^{\prime}, it must be the case that u and v are strongly resolved by x. However, there exist some $z \in W^{\prime} \cap V_{1}$ such that u and v are not strongly resolved, would imply u and v are not strongly resolved by z. Since $x, z \in V_{1}$, imply u and v are strongly resolved by a vertex of W^{\prime}.

If there does not exist any $u \in W^{\prime}$ such that u and x are not strongly resolved by a vertex of W^{\prime}, then W^{\prime} is a strong resolving set of G.

So, assume there does not exist any $u \in W^{\prime}$ such that u and x are
not strongly resolved by a vertex of W^{\prime}. Let $r \in W^{\prime} \cap V_{1}$ and let there be some other element $v \in W^{\prime}$ such that v and x and u and x are not strongly resolved by a vertex of W^{\prime}. Thus, $v \in I[u, x]$ or $u \in I[v, x]$. Since W is a strong resolving set, u, v are strongly resolved by a vertex of W. However, u and v not being strongly resolved by a vertex of W^{\prime} and $x, r \in V_{1}$ imply x, r are not strongly resolved by u and v. Also, u, v are not strongly resolved by r, a contradiction. Hence, if there exists an element $v \in W^{\prime}$ such that v and x are not strongly resolved by a vertex of W^{\prime}, then v is unique.
Case 1. Suppose $\left|V_{i}\right|>1$ for each i. For any $y \in V(G)-\{x, u\}$, choose $q \in W^{\prime}$ such that $y \sim q$. Then $d(y, u)=d(q, u)=d(q, x)=d(y, x)$. Thus, $u \sim x$, which is a contradiction.
Case 2. Suppose $\left|V_{i}\right|=1$ for some i. Since v_{i} and x are not distance similar, there is some $s \in V(G)-\{x, u\}$ with $d(s, x) \neq d(u, x)$. Note that $V_{j}=\{s\}$ for some $j, s \in V_{j}$, because if not, there is some $t \in V_{j} \cap W^{\prime}$ and $d(u, s)=d(u, t)=d(x, t)=d(x, s)$. Define, $W^{*}=W^{\prime} \cup\{s\}$. Then $\left|W^{\prime *}\right|=|W|$ and u and x are strongly resolved by a vertex of $W^{\prime *}$. Since $W^{\prime} \subset W^{\prime *}$ and using the same argument as above, a and b are strongly resolved by a vertex of W^{\prime} for any two distinct vertices $a, b \in V(G)$. Hence, $W^{\prime *}$ is a strong resolving set for G. Combining these facts we have $\operatorname{dim}_{s}(G) \leq|V(G)|-k+m$.

3. Strong metric dimension of zero divisor graphs of rings

We start this section with the following observation.
Theorem 3.1. Let R be a finite commutative ring. Then
(i) $\operatorname{dim}_{s}(\Gamma(R))$ is finite if and only if R is finite.
(ii) $\operatorname{dim}_{s}(\Gamma(R))$ is undefined if and only if R is an integral domain.

Proof. (i) If R is finite, then $\left|Z^{*}(R)\right|$ is finite and therefore $\operatorname{dim}_{s}(\Gamma(R))$ is finite. Now assume that $\operatorname{dim}_{s}(\Gamma(R))$ is finite. Let W be a minimal strong metric basis for $\Gamma(R)$ with $|W|=k$, where k is some positive integer. Then $\operatorname{dim}(\Gamma(R)) \leq \operatorname{dim}_{s}(\Gamma(R))=k$ implies that $\operatorname{dim}(\Gamma(R)) \leq$ k. Now, since the diameter of $\Gamma(R)$ is not more than 3, so by [[5], Theorem 2.3] $\Gamma(R)$ is finite. Therefore, $d(x, y) \in\{0,1,2,3\}$, for every $x, y \in Z^{*}(R)$. Hence, $\left|Z^{*}(R)\right| \leq 4^{k}$. This implies that $Z^{*}(R)$ is finite and hence R is finite.
(ii) This follows from the fact that the strong metric basis of $\Gamma(R)$ is undefined if and only if the vertex set of $\Gamma(R)$ is empty.

Theorem 3.2. Let R be a commutative ring with unity. Then $\operatorname{dim}_{s}(\Gamma(R))=$ 1 if and only if R is isomorphic to one of the following rings.
(i) $\mathbb{Z}_{6}, \mathbb{Z}_{8}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
(ii) $\frac{\mathbb{Z}_{3}[x]}{\left(x^{2}\right)}, \frac{\mathbb{Z}_{2}[x]}{\left(x^{3}\right)}$ or $\frac{\mathbb{Z}_{4}[x]}{\left(2 x, x^{2}-2\right)}$

Proof. Observe that the zero-divisor relation is not transitive for these rings, implies their $\Gamma(R)$ is a path P_{2} or P_{3}. Therefore, by Lemma 2.3, $\operatorname{dim}_{s}(G)=1$. On the other hand, since paths are the only graphs for which the strong metric dimension is 1 , so $\left|Z^{*}(R)\right| \leq 3$. The only if direction follows.

Figure 1. $\operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)\right)=2$

Proposition 3.3. Let R be a commutative ring with $1 \neq 0$. Then $\operatorname{dim}_{s}(\Gamma(R))=2$ if
(i) $R \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3}$
(ii) $R \cong \frac{\mathbb{F}_{4}[x]}{\left(x^{2}\right)}, \frac{\mathbb{Z}_{4}[x]}{\left(x^{2}+x+1\right)}, \frac{\mathbb{Z}_{4}[x]}{(2, x)^{2}}, \frac{\mathbb{Z}_{2}[x, y]}{(x, y)^{2}}$.

Proof. (i) If $R \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3}$, then $\Gamma(R)$ is a cycle on four vertices as shown in Figure 1. The set $W=\{a, b\}$ is in fact a strong resolving set of $\Gamma(R)$. Since all the possible sets $I[u, v]$, where $u \in \Gamma(R)$ and $v \in W$ have the form $I[a, b]=\{a, b\}, I[a, c]=\{a, c\}, I[a, d]=\{a, b, c, d\}$, $I[b, c]=\{a, b, c, d\}$, therefore each pair of vertices which contain vertex a or vertex b is strongly resolved by a or b. Vertices c and d are strongly resolved by both a and b, since $c \in[a, d]$ and $d \in[b, c]$. Hence, $2=$ $\operatorname{dim}\left(\Gamma\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)\right) \leq \operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)\right) \leq 2$. Thus, $\operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)\right)=2$. (ii) We know that $\Gamma(R) \cong K_{3}$ only if R is isomorphic to the rings mentioned above. Now, by Example 2.1, $\left(K_{3}\right)_{S R}=K_{3}$ and it is easy to see that $\alpha\left(K_{3}\right)=2$. Hence, $\operatorname{dim}_{s}\left(K_{3}\right)=2$, by Theorem 2.2.

For any zero-divisor graph $\Gamma(R)$ of a commutative ring R with vertex set $V(\Gamma(R))$ containing at least four vertices, $\operatorname{dim}(\Gamma(R))=|\Gamma(R)|-2$ implies that $\operatorname{dim}_{s}(\Gamma(R))=|\Gamma(R)|-2$. However, the converse is not true. For example, consider the ring $R \cong \frac{\mathbb{Z}_{4}[x]}{\left(x^{2}\right)}$. Then its $\Gamma(R)$ is shown in Figure 2(b) with $3=\operatorname{dim}(\Gamma(R)) \leq \operatorname{dim}_{s}(\Gamma(R))=5$.

Figure 2. $3=\operatorname{dim}\left(\Gamma\left(\frac{\mathbb{Z}_{4}[x]}{\left(x^{2}\right)}\right)\right) \leq \operatorname{dim}_{s}\left(\Gamma\left(\frac{\mathbb{Z}_{4}[x]}{\left(x^{2}\right)}\right)\right)=5$
Theorem 3.4. Let R be a finite commutative ring with unity 1 such that $\left|Z^{*}(R)\right| \geq 3$. If $\Gamma(R)$ has a cut vertex but no degree 1 vertex, then $\operatorname{dim}_{s}(\Gamma(R))=5$

Proof. By [[23], Theorem 3], if $\Gamma(R)$ has a cut vertex but no degree one vertex, then R is isomorphic to one of the following rings
$\mathbb{Z}_{4}[x, y] /\left(x^{2}, y^{2}, x y-2,2 x, 2 y\right), \mathbb{Z}_{2}[x, y] /\left(x^{2}, y^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}\right), \mathbb{Z}_{4}[x] /\left(x^{2}+2 x\right)$, $\mathbb{Z}_{8}[x] /\left(2 x, x^{2}+4\right), \mathbb{Z}_{2}[x, y] /\left(x^{2}, y^{2}-x y\right), \mathbb{Z}_{4}[x] /\left(x^{2}, y^{2}-x y, x y-2,2 x, 2 y\right)$. The zero-divisor graphs associated to these rings with $\operatorname{dim}_{s}(\Gamma(R))=5$ are shown in Figure 2.

Theorem 3.5. Let R be a commutative ring with unity. Then $(\Gamma(R))_{s r} \cong$ $K_{1, t}$ if and only if $R \cong \mathbb{Z}_{6}, \mathbb{Z}_{8}, \mathbb{Z}_{9}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \frac{\mathbb{Z}_{5}[x]}{\left(x^{2}\right)}, \frac{\mathbb{Z}_{2}[x]}{\left(x^{3}\right)}$ or $\frac{\mathbb{Z}_{4}[x]}{\left(2 x, x^{2}-2\right)}$ and $t=1$.

Proof. Let R be isomorphic to one of these rings. Then $\Gamma(R)$ is a path with at most three vertices. Since the only end vertices of a path are $M M D$ from each other, see Lemma 2.3, it follows that $\left|V(\Gamma(R))_{s r}\right|=$ $|\partial(\Gamma(R))|=2$. Thus, $(\Gamma(R))_{s r} \cong K_{2}$. On the other hand, let $(\Gamma(R))_{s r} \cong$ $K_{1, t}$. Then, by Lemma 2.3, $\operatorname{dim}_{s}(\Gamma(R))=1$ implies $\Gamma(R)$ is a path. Hence R is isomorphic to one of the rings mentioned above.

The above discussions lead to the following problem.
Problem 3.6. Do there exist rings R whose strong resolving graph $\Gamma(R))_{s r}$ is isomorphic to P_{3}.

Theorem 3.7. If R is a finite commutative ring with unity and $R \cong$ $\mathbb{Z}_{2} \times \mathbb{F}$ for some finite field \mathbb{F}, then $\operatorname{dim}_{s}(\Gamma(R))=|\Gamma(R)|-2$. Moreover, if R is a local ring such that $\Gamma(R)$ has no cycles, then $\operatorname{dim}_{s}(\Gamma(R))=1$.

Proof. Firstly, if R is a local ring, the only zero divisor graphs with no cycles have three or fewer vertices [[24], Theorem 2.1]. Hence, $\operatorname{dim}_{s}(\Gamma(R))=1$ in this case. Now, if R is a non local ring and $R \cong \mathbb{Z}_{2} \times \mathbb{F}$, then its zero-divisor graph has a vertex adjacent to all other vertices, that is, $\Gamma(R)$ is a star graph $K_{1,\left|Z^{*}(R)\right|-1}$ of order $\left|Z^{*}(R)\right|$. Let u be the center vertex adjacent to the set of all other $\left|Z^{*}(R)\right|-1$ vertices $v_{i},(1 \leq i \leq n)$, $n=\left|Z^{*}(R)\right|-1$ which is an independent set. Clearly, the path between the two vertices v_{i} and v_{j} is not contained in any other shortest path and therefore every strong resolving set must contain at least one of them. In other words, each v_{i} is mutually maximally distant with v_{j}, $i \neq j,(1 \leq i, j \leq n)$, as $d\left(v_{i}, v_{j}\right) \geq d\left(v_{j}, u\right)$ for every $u \in N\left(v_{i}\right)$ and $d\left(v_{i}, v_{j}\right) \geq d\left(u, v_{i}\right)$ for every $u \in N\left(v_{j}\right)$. Therefore, any strong resolving set of $K_{1,\left|Z^{*}(R)\right|-1}$ must contain either v_{i} or $v_{j}, i \neq j$.

We claim that $W=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ is a strong resolving set. For, if $W^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{n-2}\right\}$ is a strong resolving set, then by definition each pair of vertices is resolved by any vertex of W^{\prime}. Choose v_{n-1} and v_{n}. Then $v_{n-1} \in I\left[v_{i}, v_{n}\right]$ or $v_{n} \in I\left[v_{i}, v_{n-1}\right]$ for any $v_{i} \in W^{\prime}$ which is not true. Thus, W is a strong resolving set. Hence, $\operatorname{dim}_{s}(\Gamma(R))=$ $\operatorname{dim}_{s}\left(K_{1,\left|Z^{*}(R)\right|-1}\right)=\left|Z^{*}(R)\right|-2=|\Gamma(R)|-2$.

Corollary 3.8. If R is a reduced ring and $\Gamma(R)$ has a vertex adjacent to every other vertex, then either $\Gamma(R) \cong K_{2}$ or $\operatorname{dim}_{s}(\Gamma(R))=|\Gamma(R)|-2$.

Theorem 3.9. Let R be a ring and let $\Gamma(R)$ be a regular graph. Then $\operatorname{dim}_{s}(\Gamma(R))=\left|Z^{*}(R)\right|-1$ if and only if either $R \cong \mathbb{F} \times A$, where A is an integral domain, or $Z(R)$ is an annihilator ideal (and hence is prime).

Proof. Suppose that $R \cong \mathbb{F} \times A$, where A is an integral domain. Then, for $0 \neq a$, vertex $(a, 0)$ is adjacent to every other vertex. But $\Gamma(R)$ is regular graph, therefore $\Gamma(R)$ is complete regular and hence $\operatorname{dim}_{s}(\Gamma(R))=\left|Z^{*}(R)\right|-1$. Conversely, assume that $\operatorname{dim}_{s}(\Gamma(R))=$ $\left|Z^{*}(R)\right|-1$. Since $\Gamma(R)$ is regular, so $\Gamma(R)$ is a complete graph. Thus there exists a vertex adjacent to every other vertex. Now, let $Z(R)$ be not an annihilator ideal (and hence is prime). Then, by [[5], Theorem 2.5], the result follows.

Proposition 3.10. If R is a finite commutative ring with unity 1 such that $R=\mathbb{F}_{1} \times \mathbb{F}_{2}$, where \mathbb{F}_{1} and \mathbb{F}_{2} are finite fields with $\left|\mathbb{F}_{1}\right|=m \geq 3$ and $\left|\mathbb{F}_{2}\right|=n \geq 3$, then $\operatorname{dim}_{s}(\Gamma(R))=\left|\mathbb{F}_{1}\right|+\left|\mathbb{F}_{2}\right|-2 \omega(\Gamma(R))$.

Proof. If $R=\mathbb{F}_{1} \times \mathbb{F}_{2}$, then the vertex set of $\Gamma(R)$ can be partitioned into two distinct vertex sets $V_{1}=\left\{(u, 0): u \in \mathbb{F}_{1}^{*}\right\}$ and $V_{2}=\left\{(0, v) \quad: \quad v \in \mathbb{F}_{2}^{*}\right\}$, where each $(u, 0)$ is adjacent to every vertex $(0, v)$. Thus, $\Gamma(R)$ is a complete bipartite graph $K_{m-1, n-1}$. Since $\omega(\Gamma(R))=2$, by Theorem 2.6, $\operatorname{dim}_{s}(\Gamma(R))=\left|\mathbb{F}_{1}\right|+\left|\mathbb{F}_{2}\right|-2 \omega(\Gamma(R))$.

Proposition 3.11. If R is a finite local ring with maximal ideal \mathfrak{m} and $\mathfrak{m}^{2}=\{0\}$, then $\operatorname{dim}_{s}(\Gamma(R))=|\Gamma(R)|-1$.

Proof. Recall that the Jacobian radical $\mathfrak{J}(\mathfrak{R})$ of R is the intersection of maximal ideals of R. Since R is finite local ring, so $\mathfrak{J}(\mathfrak{R})=Z(R)$ and $Z(R)=\mathfrak{m}$. Thus $Z(R)$ is a nilpotent ideal and R is not a field, implies $\operatorname{ann}(Z(R)) \neq\{0\}$. As $\mathfrak{m}^{2}=\{0\}$, so $\operatorname{ann}(Z(R))=Z^{*}(R)$ and therefore $\Gamma(R)$ is complete and thus the result follows by Theorem 2.4.

Theorem 3.12. Let R be a reduced ring and \mathfrak{I}_{1} and \mathfrak{I}_{2} be two distinct prime ideals such that $\mathfrak{I}_{1} \cap \mathfrak{I}_{2}=\{0\}$. Then $\operatorname{dim}_{s}(\Gamma(R))=\left|\mathfrak{I}_{1}\right|+\left|\mathfrak{I}_{2}\right|-4$.

Proof. Let $x \in Z(R) \backslash \mathfrak{I}_{1} \cup \mathfrak{I}_{2}$. Then there exists $0 \neq b \in R$ such that $a b=0 \in \mathfrak{I}_{1} \cap \mathfrak{I}_{2}$. So, $y \in \mathfrak{I}_{1} \cap \mathfrak{I}_{2}$, a contradiction, because $\mathfrak{I}_{1} \cap \mathfrak{I}_{2}=\{0\}$. Also, $\mathfrak{I}_{1} \cap \mathfrak{I}_{2} \subseteq Z(R)$. So, $Z(R)=\mathfrak{I}_{1} \cup \mathfrak{I}_{2}$. Now, take $V_{1}=\left|\mathfrak{I}_{1}\right|-\{0\}$ and $V_{2}=\left|\mathfrak{I}_{2}\right|-\{0\}$. We claim that $\Gamma(R)$ is a complete bipartite graph with partite sets V_{1} and V_{2}. Indeed, if $a, b \in V_{1}$ with $a b=0$, then $a b \in \mathfrak{I}_{2}$ and therefore a or $b \in V_{2}$, a contradiction. Thus $\Gamma(R)$ is a bipartite graph. Now, we take $a \in V_{1}$ and $b \in V_{2}$. So $a b \in \mathfrak{I}_{1}$ and $a b \in \mathfrak{I}_{2}$, since \mathfrak{I}_{1} is an ideal and \mathfrak{I}_{2} is an ideal. Then $a b \in \mathfrak{I}_{1} \cap \mathfrak{I}_{2}=\{0\}$ implies that $a b=0$. Thus, $\Gamma(R)$ is a complete bipartite graph. Hence, by Theorem $2.6, \operatorname{dim}_{s}(\Gamma(R))=\left|\mathfrak{I}_{1}\right|+\left|\mathfrak{I}_{2}\right|-4$.

THEOREM 3.13. Let R_{1} and R_{2} be commutative rings with $R_{1} \cong \mathbb{Z}_{p^{2}}$ and $R_{2} \cong \frac{\mathbb{Z}_{p}[x]}{\left(x^{2}\right)}$, where p is a prime. Then $\operatorname{dim}_{s}\left(\Gamma\left(R_{1}\right)\right)=\operatorname{dim}_{s}\left(\Gamma\left(R_{2}\right)\right)=$ $p-2$.

Proof. Considering the ring $R_{1}=\mathbb{Z}_{p^{2}}$, its set of non-zero zero-divisors is $Z^{*}\left(R_{1}\right)=\{k p: 1 \leq k \leq p-1, k \in \mathbb{N}\}$ such that $k_{1} p k_{2} p=0$ for all $1 \leq k_{1} k_{2} \leq p-1$. Thus, $\Gamma(R) \cong K_{p-1}$.
Now, consider $R_{2}=\frac{\mathbb{Z}_{p}[x]}{\left(x^{2}\right)}=\left\{a+b x: a, b \in \mathbb{Z}_{p}\right\}$. So, $Z^{*}\left(R_{2}\right)=\{b x:$ $1 \leq b \leq p-1\}$. We see that $\Gamma\left(R_{2}\right) \cong K_{p-1}$. Therefore, by Theorem 2.4, $\operatorname{dim}_{s}\left(\Gamma\left(R_{1}\right)\right)=\operatorname{dim}_{s}\left(\Gamma\left(R_{2}\right)\right)=p-2$.

From the above theorem we have the following consequence.
Corollary 3.14. The graph $\Gamma\left(\mathbb{Z}_{n}\right)$ is Hamiltonian if and only if $\operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=\left|Z^{*}\left(\mathbb{Z}_{n}\right)\right|-1$.

Proof. By Corollary 1 of [2], we know that the graph $\Gamma\left(\mathbb{Z}_{n}\right)$ is Hamiltonian graph if and only if $n=p^{2}$, where p is a prime larger than 3 and $\Gamma\left(\mathbb{Z}_{n}\right)$ is isomorphic to K_{p-1}. Thus the result follows.

Proposition 3.15. $\operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=\left|Z^{*}\left(\mathbb{Z}_{n}\right)\right|-2$, if $n=2 p$, where p is prime larger than 2.

Proof. If $p>2$, the zero-divisor set of \mathbb{Z}_{n} is $Z^{*}\left(\mathbb{Z}_{n}\right)=\{2 k, 1 \leq k \leq$ $p ; k \in \mathbb{N}\}$ such that $2 k_{1} 2 k_{2}=0$. It follows that p is adjacent to all other vertices. Thus, $\Gamma\left(\mathbb{Z}_{n}\right) \cong K_{1,\left|Z^{*}\left(\mathbb{Z}_{n}\right)\right|-1}$. Therefore, by Theorem 2.6, $\operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=\left|Z^{*}\left(\mathbb{Z}_{n}\right)\right|-2$.

Theorem 3.16. Let p be a prime number and $n \in \mathbb{N}$. Then $\operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=$ $\left|Z^{*}\left(\mathbb{Z}_{n}\right)\right|-2$ if
(i) $n=p q$, where p and q are distinct primes.
(ii) $n=2^{2} p$, where p is any odd prime.

Proof. (i) If $n=p q$, we partition the zero-divisor set of \mathbb{Z}_{n} into sets $V_{1}=\{k p:(k, q)=1\}$ and $V_{2}=\{k q:(k, p)=1\}$. Clearly, $\Gamma\left(\mathbb{Z}_{n}\right)$ is a bipartite graph. Also, $u v=0$ for every $u \in V_{1}$ and $v \in V_{2}$. Hence, $\Gamma\left(\mathbb{Z}_{n}\right)$ is a complete bipartite graph. Therefore, by Theorem 2.6, the result follows.
(ii) If $n=2^{2} p$, where p is any odd prime, we partition the vertex set into sets $V_{1}=\{2 k, 1 \leq k \leq n, k \neq p\}$ and $V_{2}=\{k p: k p<n\}=$ $\{p, 2 p, 3 p\}$. Since, $p \nmid 2 k$ for any $1 \leq k \leq n$, none of the elements of V_{1} are adjacent. Also, since $2 \nmid p$ and $2 \nmid 3 p$, no elements of V_{2} are adjacent. Furthermore, we see that $u v=0$ for every $u \in V_{1}$ and $v \in V_{2}$. Hence, $\Gamma\left(\mathbb{Z}_{n}\right)$ is a complete bipartite graph. Therefore, by Theorem 2.6, the result follows.

Remark 3.17. To construct the zero-divisor graph of \mathbb{Z}_{n} and hence to find strong metric dimension of $\Gamma\left(\mathbb{Z}_{n}\right)$, it is best to break down n into prime factorization. Here we discuss some cases, when $1<n<100$.
Case 1. If n is a single prime, the graph $\Gamma\left(\mathbb{Z}_{n}\right)$ is trivial with no vertices or edges.
Case 2. If $n=p q$. The numbers in this case are $6,10,14,15,21,22$, $26,33,34,35,38,39,46,51,55,57,58,62,65,69,74,77,82,85,86,87$,

91, $93,94,95$. The zero-divisor graph is the complete bipartite graph by taking all the multiples of p in one partite set and the remaining zerodivisors as the multiples of q in another partite set. Thus, by Theorem $2.6, \operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=$ number of multiples of $p+$ number of multiples of $q-2$. Clearly this case is discussed in Theorem 3.16.
Case 3. If $n=p^{2}$, the numbers in this case are 9,25 and 49. This case is also discussed in Theorem 3.13.
Case 4. If $n=p^{3}$, the zero-divisor graph is a complete bipartite graph by taking the vertices which are multiples of p^{2} in one class and the remaining vertices being all multiples of p in the other. Thus this case also follows from Theorem 2.6.

Definition 3.18. The set of Gaussian integers is denoted by $\mathbb{Z}[i]=$ $\{a+i b \mid a, b \in \mathbb{Z}$ and $i=\sqrt{ }-1\}$. Clearly $\mathbb{Z}[i]$ is a ring under the usual complex operations. The factor ring $\mathbb{Z}[i] /\langle n\rangle$ is isomorphic to $\mathbb{Z}_{n}[i]=\left\{a+i b \mid a, b \in \mathbb{Z}_{n}\right\}$, where $\langle n\rangle$ is a principal ideal generated by n for some positive integer larger than 1 in $\mathbb{Z}[i]$. Obviously, $\mathbb{Z}_{n}[i]$ is a ring with addition and multiplication modulo n. This ring is called the ring of Gaussian integers modulo n.

We now determine the strong metric dimension of $\Gamma\left(\mathbb{Z}_{n}[i]\right)$.
Theorem 3.19. (i) $\operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{n}[i]\right)\right)=0$, if $n=2$.
(ii) $\operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{n}[i]\right)\right)$ is undefined, if $n=q \equiv 3$ modulo 4 .
(iii) $\operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{n}[i]\right)\right)=q^{2}-2$, if $n=q^{2}$.
(iv) $\operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{n}[i]\right)\right)=2 p-4$, if $n=p \equiv 1$ modulo 4 .
(v) $\operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{q_{1} q_{2}}[i]\right)\right)=q_{1}{ }^{2}+q_{2}{ }^{2}-4$, if $q_{j} \equiv 3$ modulo $4, j=1,2$.

Proof. (i). $\mathbb{Z}_{2}[i]$ is isomorphic to the local ring $\mathbb{Z}[i] /\left\langle(1+i)^{2}\right\rangle$, with unique maximal ideal $\{0,1+i\}$. So we have $V\left(\Gamma\left(\mathbb{Z}_{2}[i]\right)\right)=\{1+i\}$, which implies that $\Gamma\left(\mathbb{Z}_{2}[i]\right)$ is a graph on a single vertex and no edge and the result holds.
(ii). In this case $\mathbb{Z}_{q}[i]$ is a field, therefore $\Gamma\left(\mathbb{Z}_{q}[i]\right)$ is an empty graph. So $\operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{q}[i]\right)\right)$ is undefined.
(iii). $\Gamma\left(\mathbb{Z}_{q^{2}}[i]\right)$ is a complete graph isomorphic to $K_{q^{2}-1}$ implies that $\operatorname{dim}_{s}\left(\Gamma\left(\mathbb{Z}_{q^{2}}[i]\right)\right)=q^{2}-2$.
(iv). $\Gamma\left(\mathbb{Z}_{p}[i]\right)$ is a complete bipartite graph $K_{p-1, p-1}$ with partite sets $V_{1}=<a+i b>-\{0\}$ and $V_{2}=<a-i b>-\{0\}$, since $\mathbb{Z}_{p}[i] \cong \mathbb{Z}[i] \cong$ $\mathbb{Z}[i] /\langle a+i b\rangle \times \mathbb{Z}[i] /\langle a-i b\rangle$.
(v). Since $\mathbb{Z}_{q_{j}}[i]$ is a field and $\Gamma\left(\mathbb{Z}_{q_{1} q_{2}}[i]\right) \cong \Gamma\left(\mathbb{Z}_{q_{1}}[i]\right) \times \Gamma\left(\mathbb{Z}_{q_{2}}[i]\right)$, therefore $\Gamma\left(\mathbb{Z}_{q_{1} q_{2}}[i]\right) \cong K_{q_{1}^{2}-1, q_{2}{ }^{2}-1}$ is a complete bipartite graph.

The following result gives a relation between the maximum degree, diameter and metric dimension of $\Gamma(R)$.

Theorem 3.20. [19] Let R be a finite commutative ring with unity 1 such that $\left|Z^{*}(R)\right| \geq 2$ with diameter d. Then

$$
\left\lceil\log _{3}(\Delta+1)\right\rceil \leq \operatorname{dim}(\Gamma(R)) \leq\left|Z^{*}(R)\right|-d,
$$

where Δ is the maximum degree of $\Gamma(R)$.
We observe that the lower and upper bounds of Theorem 3.20 also hold when $\operatorname{dim}(\Gamma(R))$ is replaced by $\operatorname{dim}_{s}(\Gamma(R))$.

Theorem 3.21. Let R be a finite commutative ring with unity 1 such that $\left|Z^{*}(R)\right| \geq 2$ with diameter d. Then

$$
\left\lceil\log _{3}(\Delta+1)\right\rceil \leq \operatorname{dim}_{s}(\Gamma(R)) \leq\left|Z^{*}(R)\right|-d,
$$

where Δ is the maximum degree.
Proof. We first establish the upper bound. Let u and v be the vertices for which $d(u, v)=\sup \left\{d(x, y) \mid x, y \in Z^{*}(R)\right\}$, that is, $d(u, v)$ is the diameter of $\Gamma(R)$ and let $u=v_{1}, v_{2}, \ldots, v_{d}=v$ be $u-v$ path of length d. Since $W=V(\Gamma(R))-\left\{u_{i} \mid 1 \leq i \leq d\right\}$ forms a strong resolving set for $\Gamma(R)$ with $|W|=n-d$, so $\operatorname{dim}_{s}(\Gamma(R)) \leq n-d$.

Now, for the lower bound, since $\left\lceil\log _{3}(\Delta+1)\right\rceil \leq \operatorname{dim}(\Gamma(R)) \leq \operatorname{dim}_{s}(\Gamma(R))$, it follows that $\operatorname{dim}_{s}(\Gamma(R)) \geq\left\lceil\log _{3}(\Delta+1)\right\rceil$.

Theorem 3.22. If R is a finite commutative ring, then $\operatorname{dim}_{s}(\Gamma(R)) \leq$ $|\partial(\Gamma(R))|-1$.

Proof. If R is a finite commutative ring and $\Gamma(R)$ be its corresponding zero-divisor graph with vertex set $\left|Z^{*}(R)\right|$, then $\operatorname{dim}(\Gamma(R)) \leq\left|Z^{*}(R)\right|-1$ implies $\operatorname{dim}_{s}(\Gamma(R))=\alpha\left((\Gamma(R))_{S R}\right) \leq|\partial(\Gamma(R))|-1$.

Definition 3.23. For a commutative ring R with $1 \neq 0$, a compressed zero-divisor graph of a ring R is the undirected graph $\Gamma_{E}(R)$ with vertex set $Z\left(R_{E}\right) \backslash\{[0]\}=R_{E} \backslash\{[0],[1]\}$ defined by $R_{E}=\{[x]: x \in R\}$, where $[x]=\{y \in R: \operatorname{ann}(x)=\operatorname{ann}(y)\}$ and the two distinct vertices $[x]$ and $[y]$ of $Z\left(R_{E}\right)$ are adjacent if and only if $[x][y]=[x y]=[0]$, that is, if and only if $x y=0$.

The authors in [18] have discussed the metric dimension of compressed zero-divisor graphs $\Gamma_{E}(R)$. We have the following observations.

TheOrem 3.24. If R is a finite commutative ring, then $\operatorname{dim}_{E}(\Gamma(R)) \leq$ $\operatorname{dim}(\Gamma(R)) \leq \operatorname{dim}_{s}(\Gamma(R))$.

Proof. Since $\Gamma_{E}(R)$ has a vertex set constructed by taking equivalence of zero-divisors of a ring R, therefore $[x] \subset Z(R) \backslash\{0\}$ implies that each vertex of $\Gamma_{E}(R)$ is a representative of a distinct class of zero-divisors actually in R. Hence, $\operatorname{dim}\left(\Gamma_{E}(R)\right) \leq \operatorname{dim}(\Gamma(R))$. Also, we know that $\operatorname{dim}(\Gamma(R)) \leq \operatorname{dim}_{s}(\Gamma(R))$.

Proposition 3.25. (i) $\operatorname{dim}_{s}\left(\Gamma_{E}(R)\right)=0$ if $\Gamma_{E}(R) \cong K_{n}$ unless $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(ii) $\operatorname{dim}_{s}\left(\Gamma_{E}(R)\right)=1$ if $\Gamma_{E}(R) \cong K_{m, n}$, m or $n \geq 2$.
(iii) $\operatorname{dim}_{s}\left(\Gamma_{E}(R)\right)=n-1$ if $\Gamma_{E}(R)=K_{1, n}, n \geq 2$.

4. Strong metric dimension of Cartesian products

The Cartesian product of two graphs G_{1} and G_{2} is the graph $G_{1} \times G_{2}$ whose vertex set is $V=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and the two vertices $w_{1}=$ $\left(u_{1}, v_{1}\right)$ and $w_{2}=\left(u_{2}, v_{2}\right)$ in $V ; u_{1}, v_{1} \in V\left(G_{1}\right)$ and $u_{2}, v_{2} \in V\left(G_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ if and only if (a) either $u_{1}=u_{2}$ and $v_{1} v_{2} \in E\left(G_{2}\right)$ or $v_{1}=v_{2}$ and $u_{1} u_{2} \in E\left(G_{1}\right)$.
Let S be a set of vertices in the Cartesian product $G_{1} \times G_{2}$. The projection of S onto G_{1} is the set of vertices $a \in V\left(G_{1}\right)$ for which there exists a vertex $(a, v) \in S$. The same is defined similarly for G_{2}.

We have the following observation about cartesian product of two graphs.

Lemma 4.1. For any graphs G_{1} and $G_{2}, \partial\left(G_{1} \times G_{2}\right)=\partial\left(G_{1}\right) \times \partial\left(G_{2}\right)$.
Proof. Suppose $(u, v) \in \partial\left(G_{1} \times G_{2}\right)$ and $u \notin \partial\left(G_{1}\right)$. Then, for every $u_{1} \in V\left(G_{1}\right)$, there exists $u_{2} \in N_{G_{1}}(u)$ such that $d_{G_{1}}\left(u, u_{1}\right)<d_{G_{1}}\left(u_{1}, u_{2}\right)$. Now, consider a vertex $\left(u_{2}, v\right) \in N_{G_{1} \times G_{2}}(u, v)$. Then, for arbitrary $v_{1} \in V\left(G_{2}\right)$, we have $d_{G_{1} \times G_{2}}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v\right)\right)=d_{G_{1}}\left(u_{1}, u_{2}\right)+d_{G_{2}}\left(v_{1}, v\right)>$ $d_{G_{1}}\left(u_{1}, u\right)+d_{G_{2}}\left(v_{1}, v\right)=d_{G_{1} \times G_{2}}\left(\left(u_{1}, v_{1}\right),(u, v)\right)$, a contradiction to the assumption $(u, v) \in \partial\left(G_{1} \times G_{2}\right)$. Thus, $u \in \partial\left(G_{1}\right)$. Similarly, we can prove that $v \in \partial\left(G_{2}\right)$.

Now, let $u \in \partial\left(G_{1}\right)$ and $v \in \partial\left(G_{2}\right)$. Thus there exists a vertex $u_{1} \in$ $V\left(G_{1}\right)$ such that for every $u_{2} \in N_{G_{1}}(u)$, we have $d_{G_{1}}\left(u, u_{1}\right) \geq d_{G_{1}}\left(u_{1}, u_{2}\right)$ and there is a vertex $v_{1} \in V\left(G_{2}\right)$ such that for every $v_{2} \in N_{G_{2}}(v)$, we
have, $d_{G_{2}}\left(v, v_{1}\right) \geq d_{G_{2}}\left(v_{1}, v_{2}\right)$. Let $\left(u_{2}, v_{2}\right)$ be an arbitrary vertex from $N_{G_{1} \times G_{2}}(u, v)$. Without loss of generality, assume that $u_{2} u \in E\left(G_{1}\right)$ and $v_{2}=v$. Then $d_{G_{1} \times G_{2}}\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=d_{G_{1}}\left(u_{1}, u_{2}\right)+d_{G_{2}}\left(v_{1}, v_{2}\right) \leq$ $d_{G_{1}}\left(u_{1}, u\right)+d_{G_{2}}\left(v_{1}, v\right)=d_{G_{1} \times G_{2}}\left(\left(u_{1}, v_{1}\right),(u, v)\right)$ and $(u, v) \in \partial\left(G_{1} \times\right.$ G_{2}).

Here, we observe that $V\left(\left(G_{1} \times G_{2}\right)_{S R}\right)=\partial\left(G_{1} \times G_{2}\right)=\partial\left(G_{1}\right) \times$ $\partial\left(G_{2}\right)=V\left(\left(G_{1}\right) S R \times V\left(G_{2}\right)_{S R}\right)$.

Theorem 4.2. Let R be a finite commutative ring with unity $1 \neq 0$. Then $\operatorname{dim}_{s}\left(\Gamma(R) \times \Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right)=2$ if and only if $\Gamma(R)$ is a path.

Proof. If $\Gamma(R)$ is a path, then

$$
\begin{aligned}
\operatorname{dim}_{s}\left(\Gamma(R) \times \Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right) & =\alpha\left(\left(\Gamma(R) \times \Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right)_{S R}\right) \\
& =\alpha\left((\Gamma(R))_{S R} \times \Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)_{S R}\right) \\
& =\alpha\left(K_{2} \times K_{2}\right)=2 .
\end{aligned}
$$

Now, Let $G=\Gamma(R) \times \Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ and let $W=\left\{(u, v),\left(u_{1}, v_{1}\right)\right\}$ be a strong metric basis of G. We consider the following two cases.
Case 1. If $u \neq u_{1}$, let w_{1} be a neighbor of u_{1} on a $u-u_{1}$ path. Since W is a strong metric basis, each pair of vertices of G by definition is resolved by a vertex of W. We choose $\left(u_{1}, v\right)$ and $\left(w_{1}, v_{1}\right)$. Then we have $d_{G}\left(\left(u_{1}, v\right),(u, v)\right)=d_{\Gamma(R)}\left(u, u_{1}\right)+d_{\Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)}(v, v)=d_{\Gamma(R)}\left(u, w_{1}\right)+1+$ $d_{\Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)}\left(v, v_{1}\right)-1=d_{\Gamma(R)}\left(u, w_{1}\right)+d_{\Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)}\left(v, v_{1}\right)=d_{G}\left(\left(w_{1}, v_{1}\right),(u, v)\right)$. Thus, $\left(u_{1}, v\right) \notin I_{G}\left[\left(w_{1}, v_{1}\right),(u, v)\right]$ and $\left(w_{1}, v_{1}\right) \notin I_{G}\left[(u, v),\left(u_{1}, v\right)\right]$. Moreover,

$$
\begin{aligned}
d_{G}\left(\left(u_{1}, v\right),\left(u_{1}, v_{1}\right)\right) & =d_{\Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)}\left(v, v_{1}\right)=1 \\
& =d_{\Gamma(R)}\left(u_{1}, w_{1}\right)=d_{G}\left(\left(w_{1}, v_{1}\right),\left(u_{1}, v_{1}\right)\right) .
\end{aligned}
$$

Thus, $\left(u_{1}, v\right) \notin I_{G}\left[\left(w_{1}, v_{1}\right),\left(u_{1}, v_{1}\right)\right]$ and $\left(w_{1}, v_{1}\right) \notin I_{G}\left[\left(u_{1}, v_{1}\right),\left(u_{1}, v\right)\right]$. Therefore, $S=\left\{(u, v),\left(u_{1}, v_{1}\right)\right\}$ does not strongly resolve $\left(u_{1}, v\right)$ and (w_{1}, v_{1}) and so $u=u_{1}$.
Case 2. If $u=u_{1}$, then the projection of W onto $\Gamma(R)$ is a single vertex and therefore the projection of W onto $\Gamma(R)$ strongly resolves $\Gamma(R)$. Hence $\Gamma(R)$ is a path.

References

[1] M. Aijaz and S. Pirzada, On annihilating ideal graphs of commutative rings, Asian-European J. Math. to appear.
[2] S. Akbari and A. Mohammadian, On zero divisor graphs of a commutative ring, J. Algebra 274 (2004), 847-855.
[3] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (7) (2008) 2706-2719.
[4] D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston, The Zero-Divisor Graph of a Commutative Ring, II, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 220 (2001), 61-72.
[5] D. F. Anderson and P. Livingston, The zero divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447.
[6] D. F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003), 221-241.
[7] N. Ashrafi, H. R. Maimani, M. R. Pournaki and S. Yassemi, Unit graphs associated with rings, Comm. Algebra 38 (2010), 2851-2871.
[8] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA (1969).
[9] A. Azimi, A. Erfanian, and M. Farrokhi D.G., The Jacobson graph of commutative rings, J. Algebra Appl. 12 (3) (2013), 1250179.
[10] M. Baziar, E. Momtahan, and S. Safaeeyan, A zero-divisor graph of modules with respect to their (first) dual, J. Algebra Appl. 12 (3) (2013), 93-106.
[11] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226.
[12] J. Cceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara and D. R. Wood, On the metric dimension of cartesian products of graphs, SIAM J. Discrete Math. 21 (2) (2007), 423-441.
[13] G. Chatrand, L. Eroh, M. A. Johnson and O.R. Ollermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), 99-113.
[14] F. Harary, and R. A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191-195.
[15] I. Kaplansky, Commutative Rings, rev. ed., Univ. of Chicago Press, Chicago, (1974).
[16] Ortrud R. Oellermann and Joel Peters-Fransen, The strong metric dimension of graphs and digraphs, Discrete Appl. Math. 155 (2007), 356-364.
[17] S. Pirzada, An Introduction to Graph Theory, University Press, Orient Blackswan, Hyderabad, India, (2012).
[18] S. Pirzada and M. Imran Bhat, Computing metric dimension of compressed zero divisor graphs associated to rings, Acta Univ. Sap. Mathematica 10 (2) (2018), 298-318.
[19] S. Pirzada and Rameez Raja and S. P. Redmond, On locating numbers and codes of zero-divisor graphs associated with commutative rings, J. Algebra Appl. 13 (7) (2014), 1450047.
[20] S. Pirzada, M. Aijaz and S. P. Redmond, Upper dimension and bases of zero divisor graphs of commutative rings, AKCE International J. Graphs Comb. to appear.
[21] S. Redmond, The zero-divisor graph of a non-commutative ring, International J. Comm. Rings 1 (4) (2002) 203-211.
[22] S. P. Redmond, An Ideal based zero divisor graph of a commutative ring, Comm. Algebra 31 (9) (2003), 4425-4443.
[23] S. P. Redmond, Cut vertices and degree one vertices of zero-divisor graphs, Comm. Algebra 40 (8) (2012), 2749-2756.
[24] S. P. Redmond, Recovering rings from zero-divisor graphs, J. Algebra Appl. 12 (8) (2013), 1350047 (9 pages).
[25] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (7) (2011), 2338-2348.
[26] D. B. West, Introduction Graph Theory, 2nd ed. USA: Prentice Hall, (2001).

M. Imran Bhat

Department of Mathematics
University of Kashmir
Srinagar, 190006, Srinagar, Kashmir, India
E-mail: imran_bhat@yahoo.com
Shariefuddin Pirzada
Department of Mathematics
University of Kashmir
Srinagar, 190006, Kashmir, India
E-mail: pirzadasd@kashmiruniversity.ac.in

[^0]: Received October 1, 2018. Revised July 9, 2019. Accepted August 7, 2019.
 2010 Mathematics Subject Classification: 13A99, 05C78, 05C12.
 Key words and phrases: Metric dimension, zero-divisor graph, strong metric dimension.

 This research is supported by the University Grants Commission, New Delhi with research project number MRP-MAJOR-MATH-2013-8034.

 * Corresponding author.
 © The Kangwon-Kyungki Mathematical Society, 2019.
 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

