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MULTI-ORDER FRACTIONAL OPERATOR IN A

TIME-DIFFERENTIAL FORMAL WITH BALANCE

FUNCTION

S. Harikrishnan, Rabha W. Ibrahim∗, and K. Kanagarajan

Abstract. Balance function is one of the joint factors to determine
fall in risk theory. It helps to moderate the progression and riskiness
of falls for detecting balance and fall risk factors. Nevertheless, the
objective measures for balance function require expensive equipment
with the assessment of any expertise. We establish the existence and
uniqueness of a multi-order fractional differential equations based on
ψ- Hilfer operator on time scales with balance function. This class
describes the dynamic of time scales derivative. Our tool is based
on the Schauder fixed point theorem. Here, sufficient conditions for
Ulam-stability are given.

1. Introduction

Consider the dynamic equation on time scales with ψ-Hilfer fractional
derivative (HFD) of the form

{
T∆α,β;ψu(t) = h(t)H(t, u(t)), t = [0, b] := J ⊆ T,
TI1−γ;ψu(0) = u0, γ = α + β − αβ,

(1)
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where T∆α,β;ψ is ψ-HFD defined on T, α ∈ (0, 1), β ∈ [0, 1] and I1−γ;ψ

is ψ-fractional internal of order 1− γ(γ = α+ β−αβ), T is a time scale
( nonempty subset of Banach space), h is a balance function in J and
H : J × T→ R is a right-dense function.

Time scales calculus permits us to training the dynamic equations,
which include both difference and differential equations, both of which
are significant in realizing applications; for further info about the the-
oretical and potential applications of time scales, refer [1, 4, 5]. The
dynamical conduct of FDEs on time scales is presently experiencing ac-
tive studies. Several authors considered the existence and uniqueness
solutions for problems involving classical fractional derivative [2, 3].

Motivated by the above works, here we establish the existence theory
and stability criteria of FDEs on times scale. The properties of ψ-HFD
and the qualitative analysis is briefly studied in [8]. Further substantial
attention paid to Ulam stability consequences for FDEs. For Ulam-
Hyers stability theory of FDEs and its recent development, one can
refer to [10–13, 17]. Further the solution of generalized Ulam-Hyers-
Rassias(UHR) is obtained.

2. Preliminaries

Throughout this study, let C(J) be continuous function with norm

‖u‖C = max {|u(τ)| : τ ∈ J} .

We denote the space Cγ(J) as follows

Cγ(J) := {g(τ) : J → R| (ψ(τ)− ψ(0))γ g(τ) ∈ C(J)} , 0 ≤ γ < 1

the weighted space Cγ(J) of the functions g on the interval J .Thus,
Cγ(J) is the Banach space provided the norm

‖g‖Cγ = ‖(ψ(τ)− ψ(0))γ g(τ)‖C .

In the sequel, we need the following preliminaries, which can be found
in [9].

Definition 2.1. Let time scale be T. The forward jump operator
σ : T→ T is defined by σ(τ) := inf {s ∈ T : s > τ}, while the backward
jump operator ρ : T→ T is defined by ρ(τ) := sup {s ∈ T : s < τ}.
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Proposition 2.2. Suppose T is a time scale and [a, b] ⊂ T, g is
increasing continuous function on [a, b]. If the extension of g is given in
the following form:

G (s) =

{
g(s); s ∈ T
g(τ); s ∈ (τ, σ(τ)) /∈ T.

Then we have ∫ b

a

g(t)∆t ≤
∫ b

a

G (t)dt.

Definition 2.3. Let T be a time scale, J ∈ T. The left-sided R-L
fractional integral of order α ∈ R+ of function g(τ) is defined by(TIαg) (τ) =

∫ τ

0

ψ
′
(s)

(ψ(τ)− ψ(s))α−1

Γ(α)
g(s)∆s.

Definition 2.4. Suppose T is a time scale, [0, b] is an interval of T.
The R-L fractional derivative of order α ∈ [n− 1, n), n ∈ Z+ of function
g(τ) is defined by(T∆αg

)
(τ) =

(
1

ψ′(τ)

d

dτ

)n ∫ τ

0

ψ
′
(s)

(ψ(τ)− ψ(s))n−α−1

Γ(n− α)
g(s)∆s.

Definition 2.5. [7] The ψ-HFD of order α and type β of function
g(τ) is defined by

T∆α,β;ψg(t) =
(TIβ(1−α);ψ T∆(TI(1−β)(1−α);ψg)

)
(τ),

where T∆ := d
dτ

.

Remark 2.6. 1. Here T∆α,β;ψ is also written as
T∆α,β;ψ = TIβ(1−α);ψ T∆TI(1−β)(1−α);ψ = TIβ(1−α);ψ T∆γ;ψ, γ = α+β−αβ.

2. Let β = 0, it transfers into R-L derivative given by T∆α := T∆α,0.
3. Let β = 0, it turns to be Caputo fractional derivative given by

T
c∆α := TI1−α T∆.

Next, we review some lemmas which will be used to establish our
existence results.

Lemma 2.7. If α > 0 and β > 0, there exist[
TIα (ψ(s)− ψ(0))β−1

]
(τ) =

Γ(β)

Γ(β + α)
(ψ(τ)− ψ(0))β+α−1
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Lemma 2.8. Let α ≥ 0, β ≥ 0 and g ∈ L1(J). Then

TIα TIβg(τ)
a.e
= TIα+βg(τ).

Lemma 2.9. If g ∈ Cγ(J) and TI1−αg ∈ C1
γ(J), then

TIα T∆αg(τ) = g(τ)−
(
TI1−αg

)
(0)

Γ(α)
(ψ(τ)− ψ(0))α−1 .

Lemma 2.10. Suppose α > 0, a(τ) is a nonnegative function locally
integrable on 0 ≤ τ < b (some b ≤ ∞), and let g(τ) be a non-negative,
non-decreasing continuous function defined on 0 ≤ τ < b, such that
g(τ) ≤ K for some constant K. Further let u(τ) be a non-negative locally
integrable on 0 ≤ τ < b function with

|u(τ)| ≤ a(τ) + g(τ)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))α−1 u(s)∆s,

with some α > 0. Then

|u(τ)| ≤ a(τ) +

∫ τ

0

[
∞∑
n=1

(g(τ)Γ(α))n

Γ(nα)
ψ
′
(s) (ψ(τ)− ψ(s))nα−1

]
u(s)∆s.

Theorem 2.11. (Schauder FPT) Let E be a Banach space and Q be
a nonempty bounded convex and closed subset of E and N : Q → Q
is compact, and continuous map. Then N has at least one fixed point
in Q.

3. Existence results

Lemma 3.1. [9] The functional integral u is solution of (1) if and
only if u satisfies the following integral equation

u(τ) =
u0

Γ(γ)
(ψ(τ)− ψ(0))γ−1

+
1

Γ(α)

∫ t

0

ψ
′
(s) (ψ(τ)− ψ(s))α−1 h(s)H(s, u(s))∆s, t > 0.

(2)

For further investigation, we give the following assumptions:

(H1) The function H : J ×R→ R is a continuous function.
(H2) There exists a positive constants L > 0 such that

|H(τ, u)− H(τ, v)| ≤ L |u− v| .
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(H3) There exists an increasing function ϕ ∈ C1−γ(J) and there exists
λϕ > 0 such that for any τ ∈ J ,

TIαϕ(τ) ≤ λϕϕ(τ).

Theorem 3.2. Assume that (H1)-(H3) are fulfilled. Then, equation
(1) has at least one solution.

Proof. Consider the operator P : C1−γ,ψ(J)→ C1−γ,ψ(J). The equiv-
alent Volterra integral equation (2) which can be written in the operator
form
(3)

(Pu)(τ) = u0(τ) +
1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))α−1 h(s)H(s, u(s))∆s

with

u0(τ) =
u0

Γ(γ)
(ψ(τ)− ψ(0))γ−1 .(4)

Define Br =
{
u ∈ C1−γ,ψ(J) : ‖u‖C1−γ,ψ

≤ r
}

.

Set H̃(s) = H(s, 0),

σ =
|u0|
Γ(γ)

+
bB(γ, α)

Γ(α)
(ψ(b)− ψ(0))α

∥∥∥H̃∥∥∥
C1−γ,ψ

and

ω =
bLB(γ, α)

Γ(α)
(ψ(b)− ψ(0))α .



124 S. Harikrishnan, Rabha W. Ibrahim, and K. Kanagarajan

To verify Theorem 2.11, we divide the proof into three steps.
Step 1: We check that P(Br) ⊂ Br.∣∣∣(ψ(τ)− ψ(0))1−γ (Pu)(τ)

∣∣∣
≤ |u0|

Γ(γ)
+

(ψ(τ)− ψ(0))1−γ

Γ(α)

∫ τ

0
ψ
′
(s) (ψ(τ)− ψ(s))α−1 b |H(s, u(s))|∆s

≤ |u0|
Γ(γ)

+
(ψ(τ)− ψ(0))1−γ

Γ(α)

∫ τ

0
ψ
′
(s) (ψ(τ)− ψ(s))α−1 b |H(s, u(s))− H(s, 0)|∆s

+
(ψ(τ)− ψ(0))1−γ

Γ(α)

∫ τ

0
ψ
′
(s) (ψ(τ)− ψ(s))α−1 b |H(s, 0)|∆s

≤ |u0|
Γ(γ)

+
(ψ(τ)− ψ(0))1−γ

Γ(α)

∫ τ

0
ψ
′
(s) (ψ(τ)− ψ(s))α−1 bL |u|∆s

+
(ψ(τ)− ψ(0))1−γ

Γ(α)

∫ τ

0
ψ
′
(s) (ψ(τ)− ψ(s))α−1 b

∣∣∣H̃∣∣∣∆s
≤ |u0|

Γ(γ)
+
bB(γ, α)

Γ(α)
(ψ(b)− ψ(0))α ‖g̃‖C1−γ,ψ

+
bLB(γ, α)

Γ(α)
(ψ(b)− ψ(0))α ‖u‖C1−γ,ψ

.

Hence,

‖(Pu)‖ ≤ σ + ωr ≤ r.

Which yields that P(Br) ⊂ Br.
Next, the completely continuous of operator P is proved.
Step 2: The operator P is continuous.

Let un be a sequence such that un → u in C1−γ,ψ(J).∣∣∣(ψ(τ)− ψ(0))1−γ ((Pun)(t)− (Pu)(τ))
∣∣∣

≤ (ψ(τ)− ψ(0))1−γ

Γ(α)

∫ τ

0
ψ
′
(s) (ψ(τ)− ψ(s))α−1 b |H(s, un(s))− H(s, u(s))|∆s

≤ b (ψ(τ)− ψ(0))1−γ

Γ(α)

∫ τ

0
ψ
′
(s) (ψ(τ)− ψ(s))α−1 sup

s∈J
|H(s, un(s))− H(s, u(s))|∆s

≤ b (ψ(τ)− ψ(0))1−γ

Γ(α)

∫ τ

0
ψ
′
(s) (ψ(τ)− ψ(s))α−1 |H(s, un(s))− H(s, u(s))| ds,

(by Proposition 2.2)

≤ bB(γ, α)

Γ(α)
(ψ(b)− ψ(0))α ‖H(·, un(·))− H(·, u(·))‖C1−γ,ψ

,
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Since H is continuous, Lebesgue dominated convergence theorem implies

‖Pun −Pu‖C1−γ,ψ
→ 0 as n→∞.

Step 3: P(Br) is relatively compact.
Thus P(Br) is uniformly bounded. Let τ1, τ2 ∈ J , τ1 < τ2, then∣∣∣(Pu)(τ2) (ψ(τ2)− ψ(0))1−γ − (Pu)(τ1) (ψ(τ1)− ψ(0))1−γ

∣∣∣
≤

∣∣∣∣∣(ψ(τ2)− ψ(0))1−γ

Γ(α)

∫ τ2

0
ψ
′
(s) (ψ(τ2)− ψ(s))α−1 bH(s, u(s))∆s

−(ψ(τ1)− ψ(0))1−γ

Γ(α)

∫ τ1

0
ψ
′
(s) (ψ(τ1)− ψ(s))α−1 bH(s, u(s))∆s

∣∣∣∣∣
≤ b

Γ(α)

∫ τ1

0
ψ
′
(s)
∣∣∣ (ψ(τ2)− ψ(0))1−γ (ψ(τ2)− ψ(s))α−1

− (ψ(τ1)− ψ(0))1−γ (ψ(τ1)− ψ(s))α−1
∣∣∣ |H(s, u(s))|∆s

+
b (ψ(t2)− ψ(0))1−γ

Γ(α)

∫ τ2

τ1

ψ
′
(s) (ψ(τ2)− ψ(s))α−1 |H(s, u(s))|∆s

≤ b

Γ(α)

∫ τ1

0
ψ
′
(s)
∣∣∣ (ψ(τ2)− ψ(0))1−γ (ψ(τ2)− ψ(s))α−1

− (ψ(τ2)− ψ(0))1−γ (ψ(τ1)− ψ(s))α−1
∣∣∣ |H(s, u(s))| ds

+
b (ψ(τ2)− ψ(0))1−γ

Γ(α)
(ψ(τ2)− ψ(τ1))α+γ−1B(γ, α) ‖H‖C1−γ,ψ

.

Thus, right-hand part tends to zero. Hence along with the Arzëla-
Ascoli theorem and from Step 1-3, it is concluded that P is completely
continuous. Thus the proposed problem has at least one solution.

Theorem 3.3. Assume that (H1) and (H3) are fulfilled. If(
bLB(γ, α)

Γ(α)
(ψ(b)− ψ(0))α

)
< 1(5)

then there exists a unique solution for Eq. (1).

Proof. Define the operator P : C1−γ,ψ(J)→ C1−γ,ψ(J).
(6)

(Pu)(τ) = u0(τ) +
1

Γ(α)

∫ t

0

ψ
′
(s) (ψ(τ)− ψ(s))α−1 h(s)H(s, u(s))∆s
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with u0(τ) = u0
Γ(γ)

(ψ(τ)− ψ(0))γ−1.

Let u1, u2 ∈ C1−γ,ψ(J) and τ ∈ J , then∣∣∣(ψ(τ)− ψ(0))1−γ ((Pu1)(τ)− (Pu2)(τ))
∣∣∣

≤ (ψ(τ)− ψ(0))1−γ

Γ(α)

∫ τ

0
ψ
′
(s) (ψ(τ)− ψ(s))α−1 b |H(s, u1(s))− H(s, u2(s))|∆s

≤ (ψ(τ)− ψ(0))1−γ

Γ(α)

∫ τ

0
ψ
′
(s) (ψ(τ)− ψ(s))α−1 b |H(s, u1(s))− H(s, u2(s))| ds

≤ bL (ψ(τ)− ψ(0))1−γ

Γ(α)

∫ τ

0
ψ
′
(s) (ψ(τ)− ψ(s))α−1 |u1(s)− u2(s)| ds

≤ bLB(γ, α)

Γ(α)
(ψ(b)− ψ(0))α ‖u1 − u2‖C1−γ,ψ

.

Then,

‖Pu1 −Pu2‖C1−γ,ψ
≤ bLB(γ, α)

Γ(α)
(ψ(b)− ψ(0))α ‖u1 − u2‖C1−γ,ψ

.

From (5), it follows that P has a unique fixed point which is solution
of problem (1).

4. Stability analysis

Next, we shall give the definitions and the criteria generalized UHR
stability.

Definition 4.1. Equation (1) is generalized UHR stable with respect
to ϕ ∈ C1−γ(J) if there exists a real number cH,ϕ > 0 such that for each
solution v ∈ C1−γ(J) of the inequality∣∣T∆α,βv(τ)− h(τ)H(τ, v(τ))

∣∣ ≤ ϕ(t),(7)

there exists a solution u ∈ Cγ
1−γ(J) of equation (1) with

|v(τ)− u(τ)| ≤ cH,ϕϕ(τ).

Theorem 4.2. Assume that (H1), (H3), (H4) and (5) are satisfied.
Then, the problem (1) is generalized UHR stable.
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Proof. Let v ∈ C1−γ(J) be solution of the following inequality (7) and
let u ∈ C1−γ(J) be the unique solution of the ψ-Hilfer type dynamics
equation (1). By Lemma 3.1,

u(τ) = u0(τ) +
1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))α−1 h(s)H(s, u(s))∆s.

By integration of (7) we obtain
(8)∣∣∣∣v(τ)− v0(τ)− 1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))α−1 h(s)H(s, v(s))∆s

∣∣∣∣ ≤ λϕϕ(τ).

On the other hand, we have

|v(τ)− u(τ)|

≤
∣∣∣∣v(τ)− v0(τ)− 1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))α−1 h(s)H(s, v(s))∆s

∣∣∣∣
+

1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))α−1 h(s) |H(s, v(s))− g(s, u(s))|∆s

≤
∣∣∣∣v(τ)− v0(τ)− 1

Γ(α)

∫ τ

0

ψ
′
(s) (ψ(τ)− ψ(s))α−1 h(s)H(s, v(s))∆s

∣∣∣∣
+

bL

Γ(α)

∫ t

0

ψ
′
(s) (ψ(τ)− ψ(s))α−1 |v(s)− u(s)| ds

≤ λϕϕ(τ) +
bL

Γ(α)

∫ t

0

ψ
′
(s) (ψ(τ)− ψ(s))α−1 |v(s)− u(s)| ds.

By applying Lemma 2.10, we obtain

|v(τ)− u(τ)| ≤ [(1 + ν1bLλϕ)λϕ]ϕ(τ),

where ν1 = ν1(α) is a constant,then for any τ ∈ J :

|v(τ)− u(τ)| ≤ cgεϕ(τ),

Thus, the proof is completed.

Example 4.3. Consider the following equation{
T∆α,β;ψu(t) = 0.5tu, t = [0, 1] := J ⊆ T,
TI1−γ;ψu(0) = u0, γ = α + β − αβ,

(9)
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With the following parameters α = 0.5, γ = 0.5, L = 0.5 and ψ(1) =
1, ψ(0) = 0 we have(

bLB(γ, α)

Γ(α)
(ψ(b)− ψ(0))α

)
=

0.5 ∗ 3.141

1.77
= 0.887 < 1.(10)

Hence, in view of Theorem 3.3, Eq.(9) has a unique stable solution.
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Birkhãuser, Boston, 2003.

[5] M. Bohner and A. Peterson, Dtnamica equations on times scale, Birkhauser
Boston, Boston, MA.

[6] K.M. Furati, M.D. Kassim, and N.e-. Tatar, Existence and uniqueness for a
problem involving Hilfer fractional derivative, Comput. Math. Appl., 64, (2012),
1616–1626.

[7] H. Gu and J.J. Trujillo, Existence of mild solution for evolution equation with
Hilfer fractional derivative, Appl. Math. Comput., 15 (2015), 344–354.

[8] S. Harikrishnan, Kamal Shah, Dumitru Baleanu, and K. Kanagarajan, Note on
the solution of random differential equations via ψ-Hilfer fractional derivative,
Advances in Difference Equations, 2018, 2018:224.

[9] R. Hilfer, Application of fractional Calculus in Physics, World Scientific, Singa-
pore, 1999.

[10] R. W. Ibrahim, Generalized Ulam-Hyers stability for fractional differential equa-
tions, Int. J. Math., 23, (2012), 1–10.

[11] R. W. Ibrahim, Ulam-Hyers stability for Cauchy fractional differential equation
in the unit disk, Abstract and Applied Analysis. Vol. 2012. Hindawi, 2012.

[12] R. W. Ibrahim, Existence of Ulam Stability for iterative fractional differential
equations based on fractional entropy Entropy 17 (5) (2015), 3172–3181.

[13] P. Muniyappan and S. Rajan, Hyers-Ulam-Rassias stability of fractional differ-
ential equation, Int. J. Pure Appl. Math., 102, (2015), 631–642.



Multi-order fractional operator in a time-differential formal 129

[14] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[15] S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Deriva-

tives, Theory and Applications, Gordon and Breach Sci. Publishers, Yverdon,
1993.

[16] D. Vivek, K. Kanagarajan, and E.M. Elsayed, Some existence and stability re-
sults for Hilfer-fractional implicit differential equations with nonlocal conditions,
Mediterr. J. Math., 15, (2018), 1–15.

[17] J. Wang, L. Lv, and Y. Zhou, Ulam stability and data dependence for fractional
differential equations with Caputo derivative, Electron J. Qual. Theory Differ.
Equ., 63, (2011), 1–10.

S. Harikrishnan
Department of Mathematics
Sri Ramakrishna Mission Vidyalaya
College of Arts and Science
Coimbatore-641020, India
E-mail : hkkhari1@gmail.com

Rabha W. Ibrahim
Senior IEEE member
94086547
E-mail : rabhaibrahim@yahoo.com

K. Kanagarajan
Department of Mathematics
Sri Ramakrishna Mission Vidyalaya
College of Arts and Science
Coimbatore-641020, India
E-mail : kanagarajank@gmail.com


	1. Introduction
	2. Preliminaries
	3. Existence results
	4. Stability analysis
	References

