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CLASSIFICATION OF TWO-REGULAR DIGRAPHS

WITH MAXIMUM DIAMETER

Byeong Moon Kim, Byung Chul Song∗ and Woonjae Hwang

Abstract. The Klee-Quaife problem is finding the minimum or-
der µ(d, c, v) of the (d, c, v) graph, which is a c-vertex connected
v-regular graph with diameter d. Many authors contributed find-
ing µ(d, c, v) and they also enumerated and classified the graphs in
several cases. This problem is naturally extended to the case of di-
graphs. So we are interested in the extended Klee-Quaife problem.
In this paper, we deal with an equivalent problem, finding the max-
imum diameter of digraphs with given order, focused on 2-regular
case. We show that the maximum diameter of strongly connected
2-regular digraphs with order n is n − 3, and classify the digraphs
which have diameter n− 3. All 15 nonisomorphic extremal digraphs
are listed.

1. Introduction

Let G be a connected graph. G is c-vertex connected if the graph
obtained by deleting arbitrary c− 1 vertices from G remains connected.
G is v-regular if each vertex of G is adjacent to exactly v vertices. A
(d, c, v) graph (resp. ⟨d, c, v⟩ graph) is a c-vertex connected v-regular
(resp. minimum degree v) graph with diameter d. The number µ(d, c, v)
(resp. µ⟨d, c, v⟩) is the minimum order of the (d, c, v) (resp. ⟨d, c, v⟩)
graphs and a minimum (d, c, v) graph is a (d, c, v) graph on µ(d, c, v)
vertices.

In 1960’s, there have been some early results which are equivalent to
computing µ(d, c, v) and µ⟨d, c, v⟩ for special cases [4, 6, 10]. In 1976,
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concerning with armed connection network, Klee and Quaife [8] raised a
problem of finding µ(d, c, v) and µ⟨d, c, v⟩. In the same paper, µ⟨d, c, v⟩
was computed completely. For µ(d, c, v), there are some partial results
and it was lastly computed in 1989 for all d, c, v [3].

Classifying and enumerating all minimum (d, c, v) graphs is a more
complicated problem. This problem was solved only in two cases. The
first case is v = 3 and c = 1, 2 done by Klee and Quaife [9] in 1977.
The second case is v = c = 3 and d is odd. This was achieved by Klee
[7] in 1980. It is also notable Mayers [11] found a method to construct
all the (d, 3, 3) graphs for all d in 1980, whereas he couldn’t enumerate
all (d, 3, 3) graphs. Bhattacharya found a method to construct some
minimum (d, n, n) graphs in 1985 [1]. But his method didn’t cover all
minimum (d, n, n) graphs.

Now we consider the corresponding problem for digraph D = (V,A).
A digraph D is strongly connected if for each pair of vertices x, y of D
there is a directed walk from x to y. The ingegree δ+(x)(respectively,
the outdegree δ−(x) ) of a vertex x in D is the number of vertices y
in D such that (y, x) ∈ A(respectively, (x, y) ∈ A). A digraph D is
eulerian if δ+(x) = δ−(x) for each vertex x in D. D is oriented if there
is no pair of vertices x, y in D such that (x, y) ∈ A and (y, x) ∈ A.
The (d, c, δ) digraphs and ⟨d, c, δ⟩ eulerian digraphs are defined simi-
larly as the case of graphs. Finding minimum order of (d, c, δ) digraphs
and ⟨d, c, δ⟩ eulerian digraphs is equivalent to determining maximum di-
ameter d such that there is (d, c, v) and ⟨d, c, v⟩ eulerian diagraphs on
µ vertices, respectively. In [5], Knyazev proved that if D is an euler-
ian oriented digraph on n vertices, then 4n

2δ+1
− 4 ≤ diam(D) ≤ 5

2δ+n
n.

Dankelmann [2] improved the upper bound of diam(D) to 4
2δ+1

n + 2.
Their results imply that the minimum order µ of an eulerian oriented

⟨d, 1, δ⟩ digraph satisfies (2δ+1)(d−2)
4

≤ µ ≤ (2δ+1)(d+4)
4

.

In this paper, we show that the maximum diameter of strongly con-
nected 2-regular digraphs on n vertices is n−3 when n ≥ 9. As a conse-
quence we have the maximum number of vertices in a strongly connected
oriented eulerian (d, 1, 2) digraph is d+3 when d ≥ 6. Moreover, in this
case we classify all 15 digraphs of diameter n− 3.
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2. Main theorems

LetD = (V,A) be a strongly connected digraph on n vertices. Assume
that D is 2-regular. For a vertex v in D, we define A+(v) = {w ∈
V |(v, w) ∈ A} and A−(v) = {w ∈ V |(w, v) ∈ A}. We also define

v
k−→ w for each pair of vertices v, w in D if there is a walk of length k

from v to w. We use v −→ w instead of v
1−→ w. Since D is 2-regular,

the outdegree δ+(v) and indegree δ−(v) are 2 for every vertex v ∈ V .

Theorem 1. IfD is a strongly connected 2-regular digraph on n(≥ 5)
vertices, then diam(D) ≤ n− 3.

Proof. Suppose that diam(D) ≥ n − 2. There are vertices v, w in D

such that dist(v, w) = n − 2. Since v
n−2−→ w, there are v0, v1, . . . , vn−2

such that v = v0 → v1 → v2 → · · · → vn−2 = w. Since δ+(v) = 2
and δ−(w) = 2, there are vertices v′1( ̸= v1), v

′
n−3(̸= vn−3) such that v′1 ∈

A+(v) and v′n−3 ∈ A−(w). Since v′1 ̸= v0, v1 and dist(v, w) = n− 2, v′1 /∈
{v0, v1, . . . , vn−2}. Similarly, we can show that v′n−3 /∈ {v0, v1, . . . , vn−2}.
If v′1 = v′n−3, then v

2−→ w and dist(v, w) = 2 < n − 2, which is a
contradiction. So the vertex set V includes {v0, v1, . . . , vn−2, v

′
1, v

′
n−3},

which contradicts |V | = n. So diam(D) ≤ n− 3.

By the above theorem, diam(D) ≤ n − 3. From now on we as-
sume that diam(D) = n − 3. Then there are vertices v, w such that
dist(v, w) = n − 3. So there are vertices v0, v1, . . . , vn−3 such that
v = v0 → v1 → v2 → . . . → vn−3 = w. And there are vertices
v′1(̸= v1), v

′
n−4( ̸= vn−4) such that v0 −→ v′1 and v′n−4 −→ vn−3. In this

case, V = {v0, v1, . . . , vn−3, v
′
1, v

′
n−4}. Using these notations, we have the

following Lemma.

Lemma 1. Let n ≥ 7 and 1 ≤ i ≤ n − 6. If x ∈ {v0, v1, . . . , vi, v′1}
and y ∈ {vi+2, . . . , vn−3, v

′
n−4}, then (x, y) /∈ A.

Proof. If (x, y) ∈ A, then

n− 3 = dist(v0, vn−3) ≤ dist(v0, x) + dist(x, y) + dist(y, vn−3)

≤ i+ 1 + n− i− 5 = n− 4.

This is a contradiction.

Corollary 1. If n ≥ 10 and 3 ≤ i ≤ n− 7, then vi+1 −→ vi.
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Proof. Let Ai = {v0, v1, . . . , vi, v′1} and Bi = {vi+1, . . . , vn−3, v
′
n−4}.

Since Ai ∪ Bi = V , Ai ∩ Bi = ϕ and D is 2-regular, the number of
arcs from Ai to Bi and from Bi to Ai are equal. By Lemma 1, there
are no arc from Ai−1 to Bi and from Ai to Bi+1. So (vi, vi+1) is the
only arc from Ai to Bi. Thus there is only one arc from Bi to Ai. Let
A+(vi+1) = {vi+2, x} and A−(vi) = {vi−1, y}. Since there is no arc from
{vi+1} to Bi+2, x ∈ Ai. Since (vi+1, x) is the only arc from Bi to Ai,
there is no arc from Bi+1 to {vi}. So y ∈ Ai+1. By Lemma 1, there is
no arc from Ai−2 to {vi}, which implies y /∈ Ai−2. Since y ̸= vi−1, vi and
y = vi+1. Thus, vi+1 −→ vi.

By Corollary 1, vi+1 → vi → vi−1 for n ≥ 11 and 4 ≤ i ≤ n− 7. Since
D is 2-regular we have the following corollary.

Corollary 2. If n ≥ 11 and 4 ≤ i ≤ n−7, then A−(vi) = A+(vi) =
{vi−1, vi+1}.

If V ′ ⊂ V , then we use ⟨V ′⟩ to be the directed subgraph of D = (V,A)
which is induced by V ′. For n ≥ 2, let Pn be the path on n vertices and
P1 be trivial graph.

Lemma 2. If n ≥ 9, then ⟨v3, . . . , vn−6⟩ is isomorphic to the path
Pn−8.

Proof. It is trivial when n = 9, 10. When n ≥ 11, by Lemma 1, v3 −→
vn−6. Since A+(vn−6) = {vn−5, vn−7}, vn−6 −→ v3. So by Corollary 2,
⟨v3, . . . , vn−6⟩ is isomorphic to the path Pn−8.

Lemma 3. If n ≥ 9, then we have the followings.
(1) ⟨v0, . . . , v3, v′1⟩ is isomorphic to one of H1, . . . , H5 in Figure 1.
(2) ⟨vn−6, . . . , vn−3, v

′
n−4⟩ is isomorphic to one of T1, . . . , T5 in Figure 1.

Proof. We divide the proof into the cases according to how the sets
A+(v1), A

+(v′1) are given.
Case1. A+(v1) = {v0, v2}, A+(v′1) = {v0, v1}
Since A−(v0) = {v′1, v1} and A−(v1) = {v0, v′1}, v2 → v′1. Since A

−(v′1) =
{v0, v2}, by Lemma 1, v3 → v2. So < v0, v1, v2, v3, v

′
1 > is isomorphic to

H1 in Figure 1.
Case2. A+(v1) = {v′1, v2}, A+(v′1) = {v0, v1}
Since A−(v′1) = {v0, v1} and A−(v1) = {v0, v′1}, by Lemma 1 v2 → v0.
Lemma 1 and the fact that A−(v0) = {v′1, v2} imply v3 → v2. We can
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see ⟨v′1, v1, v2, v3, v0⟩ is isomorphic to H1 in Figure 1.
Case3. A+(v1) = A+(v′1) = {v0, v2}
Since A−(v0) = {v1, v′1}, v2 −→ v0. By Lemma 1, v2 → v1 or v2 → v′1.
If v2 → v1, A

−(v1) = {v0, v2}. Since A−(v2) = A−(v0) = {v1, v′1}, by
Lemma 1 v3 → v′1. So ⟨v0, v1, v2, v3, v′1⟩ = H2 in Figure 1. If v2 → v′1,
then we have v3 → v1. And ⟨v0, v′1, v2, v3, v1⟩ is isomorphic to H2 in
Figure 1.
Case4. A+(v1) = {v′1, v2}, A+(v′1) = {v0, v2}
Since A−(v′1) = {v0, v1}, v2 −→ v′1. So v2 → v1 or v2 → v0. If v2 → v0,
since A−(v0) = {v′1, v2} and A−(v2) = {v′1, v1}, by Lemma 1 v3 → v1.
So < v0, v1, v2, v3, v

′
1 > is isomorphic to H3 in Figure 1. If v2 → v1, then

A−(v′1) = {v0, v1}, A−(v1) = {v0, v2} and A−(v2) = {v1, v′1}. By Lemma
1, v3 → v0. So ⟨v0, v1, v2, v3, v′1⟩ is isomorphic to H4 in Figure 1.
Case5. A+(v1) = {v0, v2}, A+(v′1) = {v1, v2}
Since A−(v1) = {v0, v′1}, by Lemma 1 v2 → v0 or v2 → v′1. If v2 → v0,
since A−(v0) = {v1, v2}, A−(v1) = {v0, v′1} and A−(v2) = {v1, v′1}, by
Lemma 1 v3 → v′1. So ⟨v0, v′1, v2, v3, v1⟩ is isomorphic to H3 in Figure
1. If v2 → v′1, we must have v3 → v0. We can see ⟨v0, v′1, v2, v3, v1⟩
is isomorphic to H4 in Figure 1. Case6. A+(v1) = {v′1, v2}, A+(v′1) =
{v1, v2}
Lemma 1, A−(v1) = {v0, v′1}, A−(v′1) = {v0, v1} and A−(v2) = {v1, v′1}
imply v2 → v0 and v3 → v0. So ⟨v0, v1, v2, v3, v′1⟩ is isomorphic to H5

in Figure 1. So (1) holds. Similarly we can prove (2) by substituting
v0, v1, v2, v3, v

′
1 with vn−3, vn−4, vn−5, vn−6, v

′
n−4 respectively.

We call H1, . . . , H5 in Lemma 3 as heads and T1, . . . , T5 in Lemma
3 as tails. We can see that the union of ⟨v0, v1, v2, v3, v′1⟩, ⟨v3, . . . , vn−6⟩
and ⟨vn−6, vn−5, vn−4, vn−3, v

′
n−4⟩ is a 2-regular digraph on V . So D is the

union of subgraphs ⟨v0, v1, v2, v3, v′1⟩, ⟨v3, . . . , vn−6⟩ and ⟨vn−6, vn−5, vn−4,
vn−3, v

′
n−4⟩. Let Di,j be the union Hi ∪ Pn−8 ∪ Tj of digraphs Hi, Pn−8

and Tj for 1 ≤ i, j ≤ 5.

Theorem 2. If D is a strongly connected 2-regular digraph on n
vertices and diam(D) = n− 3, then D is isomorphic to one of {Di,j|1 ≤
i ≤ j ≤ 5} in Figure 2.

Proof. Let Di,j = Hi ∪ Pn−8 ∪ Tj. The functions fi defined by

(fi(v0), fi(v1), fi(v2), fi(v3), fi(v
′
1)) = Fi

where F1 = (vn−3, v
′
n−4, vn−5, vn−6, vn−4), F2 = (vn−4, vn−3, v

′
n−4, vn−6, vn−5),

F3 = (vn−3, vn−5, vn−4, vn−6, v
′
n−4), F4 = (vn−5, v

′
n−4, vn−4, vn−6, vn−4),
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Figure 1. Heads and tails

and F5 = (vn−5, vn−4, vn−3, vn−6, v
′
n−4) give isomorphisms from Hi to

Ti for all i = 1, 2, . . . , 5. Thus Di,j and Dj,i are isomorphic for all
i = 1, 2, . . . , 5. So D is isomorphic to one of

{Di,j|1 ≤ i ≤ j ≤ 5}.
We can see these 15 digraphs are not isomorphic.

By Theorem 2, we can conclude that if D is a strongly connected 2-
regular digraph and diam(D) = d ≥ 6, then D has at least d+3 vertices
and the extremal cases are given in Figure 2.
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