CLASSIFICATION OF TWO-REGULAR DIGRAPHS WITH MAXIMUM DIAMETER

Byeong Moon Kim, Byung Chul Song* and Woonjae Hwang

ABSTRACT. The Klee-Quaife problem is finding the minimum order $\mu(d,c,v)$ of the (d,c,v) graph, which is a c-vertex connected v-regular graph with diameter d. Many authors contributed finding $\mu(d,c,v)$ and they also enumerated and classified the graphs in several cases. This problem is naturally extended to the case of digraphs. So we are interested in the extended Klee-Quaife problem. In this paper, we deal with an equivalent problem, finding the maximum diameter of digraphs with given order, focused on 2-regular case. We show that the maximum diameter of strongly connected 2-regular digraphs with order n is n-3, and classify the digraphs which have diameter n-3. All 15 nonisomorphic extremal digraphs are listed.

1. Introduction

Let G be a connected graph. G is c-vertex connected if the graph obtained by deleting arbitrary c-1 vertices from G remains connected. G is v-regular if each vertex of G is adjacent to exactly v vertices. A (d,c,v) graph (resp. $\langle d,c,v\rangle$ graph) is a c-vertex connected v-regular (resp. minimum degree v) graph with diameter d. The number $\mu(d,c,v)$ (resp. $\mu\langle d,c,v\rangle$) is the minimum order of the (d,c,v) (resp. $\langle d,c,v\rangle$) graphs and a minimum (d,c,v) graph is a (d,c,v) graph on $\mu(d,c,v)$ vertices.

In 1960's, there have been some early results which are equivalent to computing $\mu(d, c, v)$ and $\mu(d, c, v)$ for special cases [4, 6, 10]. In 1976,

Received April 29, 2012. Revised June 13, 2012. Accepted June 15, 2012.

²⁰¹⁰ Mathematics Subject Classification: 05C20, 05C12, 05C07.

Key words and phrases: 2-regular, diameter, digraphs.

This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.

^{*}Corresponding author.

concerning with armed connection network, Klee and Quaife [8] raised a problem of finding $\mu(d, c, v)$ and $\mu(d, c, v)$. In the same paper, $\mu(d, c, v)$ was computed completely. For $\mu(d, c, v)$, there are some partial results and it was lastly computed in 1989 for all d, c, v [3].

Classifying and enumerating all minimum (d, c, v) graphs is a more complicated problem. This problem was solved only in two cases. The first case is v = 3 and c = 1, 2 done by Klee and Quaife [9] in 1977. The second case is v = c = 3 and d is odd. This was achieved by Klee [7] in 1980. It is also notable Mayers [11] found a method to construct all the (d, 3, 3) graphs for all d in 1980, whereas he couldn't enumerate all (d, 3, 3) graphs. Bhattacharya found a method to construct some minimum (d, n, n) graphs in 1985 [1]. But his method didn't cover all minimum (d, n, n) graphs.

Now we consider the corresponding problem for digraph D=(V,A). A digraph D is strongly connected if for each pair of vertices x,y of D there is a directed walk from x to y. The ingegree $\delta^+(x)$ (respectively, the outdegree $\delta^-(x)$) of a vertex x in D is the number of vertices y in D such that $(y,x)\in A$ (respectively, $(x,y)\in A$). A digraph D is eulerian if $\delta^+(x)=\delta^-(x)$ for each vertex x in D. D is oriented if there is no pair of vertices x,y in D such that $(x,y)\in A$ and $(y,x)\in A$. The (d,c,δ) digraphs and $\langle d,c,\delta\rangle$ eulerian digraphs are defined similarly as the case of graphs. Finding minimum order of (d,c,δ) digraphs and (d,c,δ) eulerian digraphs is equivalent to determining maximum diameter d such that there is (d,c,v) and (d,c,v) eulerian diagraphs on μ vertices, respectively. In [5], Knyazev proved that if D is an eulerian oriented digraph on n vertices, then $\frac{4n}{2\delta+1}-4\leq \operatorname{diam}(D)\leq \frac{5}{2\delta+n}n$. Dankelmann [2] improved the upper bound of $\operatorname{diam}(D)$ to $\frac{4}{2\delta+1}n+2$. Their results imply that the minimum order μ of an eulerian oriented $\langle d,1,\delta\rangle$ digraph satisfies $\frac{(2\delta+1)(d-2)}{4}\leq \mu\leq \frac{(2\delta+1)(d+4)}{4}$.

In this paper, we show that the maximum diameter of strongly connected 2-regular digraphs on n vertices is n-3 when $n \geq 9$. As a consequence we have the maximum number of vertices in a strongly connected oriented eulerian (d, 1, 2) digraph is d+3 when $d \geq 6$. Moreover, in this case we classify all 15 digraphs of diameter n-3.

2. Main theorems

Let D=(V,A) be a strongly connected digraph on n vertices. Assume that D is 2-regular. For a vertex v in D, we define $A^+(v)=\{w\in V|(v,w)\in A\}$ and $A^-(v)=\{w\in V|(w,v)\in A\}$. We also define $v\stackrel{k}{\longrightarrow} w$ for each pair of vertices v,w in D if there is a walk of length k from v to w. We use $v\longrightarrow w$ instead of $v\stackrel{1}{\longrightarrow} w$. Since D is 2-regular, the outdegree $\delta^+(v)$ and indegree $\delta^-(v)$ are 2 for every vertex $v\in V$.

THEOREM 1. If D is a strongly connected 2-regular digraph on $n (\geq 5)$ vertices, then diam $(D) \leq n - 3$.

Proof. Suppose that $\operatorname{diam}(D) \geq n-2$. There are vertices v, w in D such that $\operatorname{dist}(v, w) = n-2$. Since $v \xrightarrow{n-2} w$, there are $v_0, v_1, \ldots, v_{n-2}$ such that $v = v_0 \to v_1 \to v_2 \to \cdots \to v_{n-2} = w$. Since $\delta^+(v) = 2$ and $\delta^-(w) = 2$, there are vertices $v_1'(\neq v_1), v_{n-3}'(\neq v_{n-3})$ such that $v_1' \in A^+(v)$ and $v_{n-3}' \in A^-(w)$. Since $v_1' \neq v_0, v_1$ and $\operatorname{dist}(v, w) = n-2, v_1' \notin \{v_0, v_1, \ldots, v_{n-2}\}$. Similarly, we can show that $v_{n-3}' \notin \{v_0, v_1, \ldots, v_{n-2}\}$. If $v_1' = v_{n-3}'$, then $v \xrightarrow{2} w$ and $\operatorname{dist}(v, w) = 2 < n-2$, which is a contradiction. So the vertex set V includes $\{v_0, v_1, \ldots, v_{n-2}, v_1', v_{n-3}'\}$, which contradicts |V| = n. So $\operatorname{diam}(D) \leq n-3$.

By the above theorem, $\operatorname{diam}(D) \leq n-3$. From now on we assume that $\operatorname{diam}(D) = n-3$. Then there are vertices v, w such that $\operatorname{dist}(v, w) = n-3$. So there are vertices $v_0, v_1, \ldots, v_{n-3}$ such that $v = v_0 \to v_1 \to v_2 \to \ldots \to v_{n-3} = w$. And there are vertices $v_1'(\neq v_1), v_{n-4}'(\neq v_{n-4})$ such that $v_0 \to v_1'$ and $v_{n-4}' \to v_{n-3}$. In this case, $V = \{v_0, v_1, \ldots, v_{n-3}, v_1', v_{n-4}'\}$. Using these notations, we have the following Lemma.

LEMMA 1. Let $n \geq 7$ and $1 \leq i \leq n-6$. If $x \in \{v_0, v_1, \dots, v_i, v_1'\}$ and $y \in \{v_{i+2}, \dots, v_{n-3}, v_{n-4}'\}$, then $(x, y) \notin A$.

Proof. If $(x,y) \in A$, then

$$n-3 = \operatorname{dist}(v_0, v_{n-3}) \le \operatorname{dist}(v_0, x) + \operatorname{dist}(x, y) + \operatorname{dist}(y, v_{n-3})$$

 $\le i + 1 + n - i - 5 = n - 4.$

This is a contradiction.

COROLLARY 1. If $n \ge 10$ and $3 \le i \le n - 7$, then $v_{i+1} \longrightarrow v_i$.

Proof. Let $A_i = \{v_0, v_1, \ldots, v_i, v_1'\}$ and $B_i = \{v_{i+1}, \ldots, v_{n-3}, v_{n-4}'\}$. Since $A_i \cup B_i = V$, $A_i \cap B_i = \phi$ and D is 2-regular, the number of arcs from A_i to B_i and from B_i to A_i are equal. By Lemma 1, there are no arc from A_{i-1} to B_i and from A_i to B_{i+1} . So (v_i, v_{i+1}) is the only arc from A_i to B_i . Thus there is only one arc from B_i to A_i . Let $A^+(v_{i+1}) = \{v_{i+2}, x\}$ and $A^-(v_i) = \{v_{i-1}, y\}$. Since there is no arc from $\{v_{i+1}\}$ to $\{v_{i+1}\}$ to $\{v_{i+1}\}$ to $\{v_{i+1}\}$ to $\{v_{i+1}\}$ to $\{v_{i+1}\}$ to $\{v_{i+1}\}$. So $\{v_{i+1}\}$. By Lemma 1, there is no arc from $\{v_{i+1}\}$ to $\{v_{i+1}\}$, which implies $y \notin A_{i-2}$. Since $y \neq v_{i-1}, v_i$ and $y = v_{i+1}$. Thus, $v_{i+1} \longrightarrow v_i$.

By Corollary 1, $v_{i+1} \to v_i \to v_{i-1}$ for $n \ge 11$ and $4 \le i \le n-7$. Since D is 2-regular we have the following corollary.

COROLLARY 2. If $n \ge 11$ and $4 \le i \le n-7$, then $A^-(v_i) = A^+(v_i) = \{v_{i-1}, v_{i+1}\}.$

If $V' \subset V$, then we use $\langle V' \rangle$ to be the directed subgraph of D = (V, A) which is induced by V'. For $n \geq 2$, let P_n be the path on n vertices and P_1 be trivial graph.

LEMMA 2. If $n \geq 9$, then $\langle v_3, \ldots, v_{n-6} \rangle$ is isomorphic to the path P_{n-8} .

Proof. It is trivial when n = 9, 10. When $n \ge 11$, by Lemma 1, $v_3 \longrightarrow v_{n-6}$. Since $A^+(v_{n-6}) = \{v_{n-5}, v_{n-7}\}, v_{n-6} \longrightarrow v_3$. So by Corollary 2, $\langle v_3, \ldots, v_{n-6} \rangle$ is isomorphic to the path P_{n-8} .

LEMMA 3. If $n \geq 9$, then we have the followings.

- (1) $\langle v_0, \ldots, v_3, v_1' \rangle$ is isomorphic to one of H_1, \ldots, H_5 in Figure 1.
- (2) $\langle v_{n-6}, \ldots, v_{n-3}, v'_{n-4} \rangle$ is isomorphic to one of T_1, \ldots, T_5 in Figure 1.

Proof. We divide the proof into the cases according to how the sets $A^+(v_1), A^+(v_1')$ are given.

Case1. $A^+(v_1) = \{v_0, v_2\}, A^+(v_1') = \{v_0, v_1\}$

Since $A^-(v_0) = \{v_1', v_1\}$ and $A^-(v_1) = \{v_0, v_1'\}, v_2 \to v_1'$. Since $A^-(v_1') = \{v_0, v_2\}$, by Lemma 1, $v_3 \to v_2$. So $\langle v_0, v_1, v_2, v_3, v_1' \rangle$ is isomorphic to H_1 in Figure 1.

Case 2. $A^+(v_1) = \{v_1', v_2\}, A^+(v_1') = \{v_0, v_1\}$

Since $A^-(v_1') = \{v_0, v_1\}$ and $A^-(v_1) = \{v_0, v_1'\}$, by Lemma 1 $v_2 \to v_0$. Lemma 1 and the fact that $A^-(v_0) = \{v_1', v_2\}$ imply $v_3 \to v_2$. We can see $\langle v'_1, v_1, v_2, v_3, v_0 \rangle$ is isomorphic to H_1 in Figure 1.

Case3. $A^+(v_1) = A^+(v_1') = \{v_0, v_2\}$

Since $A^-(v_0) = \{v_1, v_1'\}, \ v_2 \longrightarrow v_0$. By Lemma 1, $v_2 \to v_1$ or $v_2 \to v_1'$. If $v_2 \to v_1$, $A^-(v_1) = \{v_0, v_2\}$. Since $A^-(v_2) = A^-(v_0) = \{v_1, v_1'\}$, by Lemma 1 $v_3 \to v_1'$. So $\langle v_0, v_1, v_2, v_3, v_1' \rangle = H_2$ in Figure 1. If $v_2 \to v_1'$, then we have $v_3 \to v_1$. And $\langle v_0, v_1', v_2, v_3, v_1 \rangle$ is isomorphic to H_2 in Figure 1.

Case4. $A^+(v_1) = \{v_1', v_2\}, A^+(v_1') = \{v_0, v_2\}$

Since $A^-(v_1') = \{v_0, v_1\}, v_2 \longrightarrow v_1'$. So $v_2 \to v_1$ or $v_2 \to v_0$. If $v_2 \to v_0$, since $A^-(v_0) = \{v_1', v_2\}$ and $A^-(v_2) = \{v_1', v_1\}$, by Lemma 1 $v_3 \to v_1$. So $\langle v_0, v_1, v_2, v_3, v_1' \rangle$ is isomorphic to H_3 in Figure 1. If $v_2 \to v_1$, then $A^-(v_1') = \{v_0, v_1\}, A^-(v_1) = \{v_0, v_2\}$ and $A^-(v_2) = \{v_1, v_1'\}$. By Lemma 1, $v_3 \to v_0$. So $\langle v_0, v_1, v_2, v_3, v_1' \rangle$ is isomorphic to H_4 in Figure 1.

Case 5. $A^+(v_1) = \{v_0, v_2\}, A^+(v_1') = \{v_1, v_2\}$

Since $A^-(v_1) = \{v_0, v_1'\}$, by Lemma 1 $v_2 \to v_0$ or $v_2 \to v_1'$. If $v_2 \to v_0$, since $A^-(v_0) = \{v_1, v_2\}, A^-(v_1) = \{v_0, v_1'\}$ and $A^-(v_2) = \{v_1, v_1'\}$, by Lemma 1 $v_3 \to v_1'$. So $\langle v_0, v_1', v_2, v_3, v_1 \rangle$ is isomorphic to H_3 in Figure 1. If $v_2 \to v_1'$, we must have $v_3 \to v_0$. We can see $\langle v_0, v_1', v_2, v_3, v_1 \rangle$ is isomorphic to H_4 in Figure 1. Case6. $A^+(v_1) = \{v_1', v_2\}, A^+(v_1') = \{v_1, v_2\}$

Lemma 1, $A^-(v_1) = \{v_0, v_1'\}, A^-(v_1') = \{v_0, v_1\}$ and $A^-(v_2) = \{v_1, v_1'\}$ imply $v_2 \to v_0$ and $v_3 \to v_0$. So $\langle v_0, v_1, v_2, v_3, v_1' \rangle$ is isomorphic to H_5 in Figure 1. So (1) holds. Similarly we can prove (2) by substituting v_0, v_1, v_2, v_3, v_1' with $v_{n-3}, v_{n-4}, v_{n-5}, v_{n-6}, v_{n-4}'$ respectively.

We call H_1, \ldots, H_5 in Lemma 3 as heads and T_1, \ldots, T_5 in Lemma 3 as tails. We can see that the union of $\langle v_0, v_1, v_2, v_3, v_1' \rangle, \langle v_3, \ldots, v_{n-6} \rangle$ and $\langle v_{n-6}, v_{n-5}, v_{n-4}, v_{n-3}, v_{n-4}' \rangle$ is a 2-regular digraph on V. So D is the union of subgraphs $\langle v_0, v_1, v_2, v_3, v_1' \rangle, \langle v_3, \ldots, v_{n-6} \rangle$ and $\langle v_{n-6}, v_{n-5}, v_{n-4}, v_{n-3}, v_{n-4}' \rangle$. Let $D_{i,j}$ be the union $H_i \cup P_{n-8} \cup T_j$ of digraphs H_i, P_{n-8} and T_j for $1 \leq i, j \leq 5$.

THEOREM 2. If D is a strongly connected 2-regular digraph on n vertices and diam(D) = n - 3, then D is isomorphic to one of $\{D_{i,j}|1 \le i \le j \le 5\}$ in Figure 2.

Proof. Let $D_{i,j} = H_i \cup P_{n-8} \cup T_j$. The functions f_i defined by

$$(f_i(v_0), f_i(v_1), f_i(v_2), f_i(v_3), f_i(v_1')) = F_i$$

where $F_1 = (v_{n-3}, v'_{n-4}, v_{n-5}, v_{n-6}, v_{n-4}), F_2 = (v_{n-4}, v_{n-3}, v'_{n-4}, v_{n-6}, v_{n-5}),$ $F_3 = (v_{n-3}, v_{n-5}, v_{n-4}, v_{n-6}, v'_{n-4}), F_4 = (v_{n-5}, v'_{n-4}, v_{n-4}, v_{n-6}, v_{n-4}),$

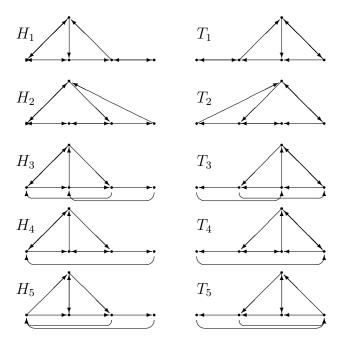


Figure 1. Heads and tails

and $F_5 = (v_{n-5}, v_{n-4}, v_{n-3}, v_{n-6}, v'_{n-4})$ give isomorphisms from H_i to T_i for all i = 1, 2, ..., 5. Thus $D_{i,j}$ and $D_{j,i}$ are isomorphic for all i = 1, 2, ..., 5. So D is isomorphic to one of

$${D_{i,j}|1 \le i \le j \le 5}.$$

We can see these 15 digraphs are not isomorphic.

By Theorem 2, we can conclude that if D is a strongly connected 2-regular digraph and $diam(D) = d \ge 6$, then D has at least d+3 vertices and the extremal cases are given in Figure 2.

References

- [1] D. Bhattacharya, The minimum order of n-connected n-regular graphs with specified diameters, IEEE Trans. Circuits Syst., CAS-32 (1985), No. 4, 407–409.
- [2] P. Dankelmann, *The diameter of directed graphs*, J. Combin. Theory Ser. B, **94** (2005), No. 1, 183–186.
- [3] E. Engelhardt, V. Klee, K. Li, H. Quaife, Minimum graphs of specified diameter, connectivity and valence. II., Discrete Math. 78 (1989), No. 3, 257–266.

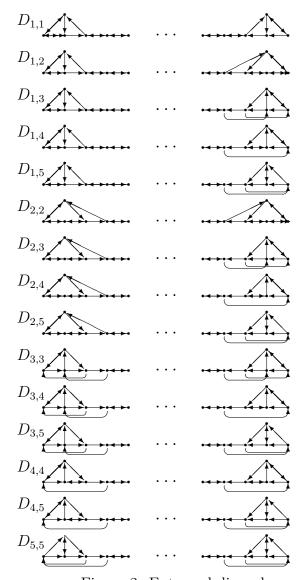


Figure 2. Extremal digraphs

- [4] B. Grünbaum and T. Motzkin, Longest simple paths in polyhedral graphs, J. Lond. Math. Soc.(2) 37, 152-160 (1962).
- [5] A. Knyazev, Diameters of Pseudosymmetric Graphs (Russian), Mat. Zametki, 41 (1987), No. 6, 829–843. (English translation: Math. Notes, 41 (5-6) (1987), 473–482.)

- [6] V. Klee, Diameters of Polyhedral graphs, Canad. J. Math. 16 (1964), 602–614.
- [7] V. Klee, Classification and enumeration of minimum (d, 3, 3)-graphs for odd d, J. Combin. Theory Ser. B, 28 (1980), 184–207.
- [8] V. Klee and H. Quaife, Minimum graphs of specified diameter, connectivity and valence, Math. Oper. Res. 1 (1976), No. 1, 28–31.
- [9] V. Klee and H. Quaife, Classification and enumeration of minimum (d, 1, 3)-graphs and minimum (d, 2, 3)-graphs, J. Combin. Theory Ser. B, **23** (1977), 83–93.
- [10] J. Moon, On the diameter of graph, Michigan Math. J. 12 (1965), 349–351.
- [11] B. Myers, The minimum-order three-connected cubic graphs with specified diameters, IEEE Trans. Circuits Syst. CAS-27 (1980), No. 8, 698–709.

Department of Mathematics Gangneung-Wonju National University Gangneung 210-702, Korea E-mail: kbm@gwnu.ac.kr

Department of Mathematics Gangneung-Wonju National University Gangneung 210-702, Korea E-mail: bcsong@gwnu.ac.kr

Department of Information and Mathematics Korea University Jochiwon 339-700, Korea *E-mail*: woonjae@korea.ac.kr