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SOME METRIC ON EINSTEIN LORENTZIAN WARPED

PRODUCT MANIFOLDS

Soo-Young Lee

Abstract. In this paper, letM = B×f2F be an Einstein Lorentzian
warped product manifold with 2−dimensional base. We study the
geodesic completeness of some metric with constant curvature. First
of all, we discuss the existence of nonconstant warping functions on
M. As the results, we have some metric g admits nonconstant warp-
ing functions f. Finally, we consider the geodesic completeness on
M.

1. Introduction

R.L. Bishop and B. O’Neill introduced singly warped products or sim-
ply warped products to construct Riemannian manifolds with negative
sectional curvature([5]). Later, we study the existence of some metric
on Riemannian warped product manifolds([7], [12], [18]). And we con-
sider the existence and the completeness of some metric on Lorentzian
warped product manifolds([2], [3], [4], [8], [11], [14], [15], [16], [17], [19],
[25], [26]).

In the present work, we study multiply warped products or multi-
warped products. One can also generalize singly warped products to
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multiply warped products. A multiply warped product (M, g) is a prod-
uct manifold of the form M = B ×f1 F1 × · · · ×fm Fm with the metric
g = gB ⊕ f 2

1 gF1 ⊕ · · · ⊕ f 2
mgFm , where for each i ∈ {1, · · · ,m}, fi : B →

(0,∞) is smooth and (Fi, gFi) is a pseudo-Riemannian manifold. In par-
ticular, when B = (a, b) with the negative definite metric gB = −dt2, the
corresponding multiply warped product M = (a, b)×f1 F1 × · · · ×fm Fm
with the metric g = −dt2 ⊕ f 2

1 gF1 ⊕ · · · ⊕ f 2
mgFm is called a Lorentzian

multiply warped product, where for each i ∈ {1, · · · ,m}, (Fi, gFi) is a
Riemannian manifold and −∞ ≤ a < b ≤ ∞([27]).

In a recently, we study an Einstein manifold. We obtain some results
an Einstein warped product manifold([6], [9], [10], [13], [20], [21], [22],
[23]). In [1], the author may also consider for that purpose special case of
an Einstein warped product manifold M = B×f2 F with 2−dimensional
base, B = (a, b) ×f ′2 R, where −∞ ≤ a < b ≤ ∞. And we study the
existence of nonconstant warping functions on M([24]).

In this paper, we study an Einstein Lorentzian warped product man-
ifold M = B ×f2 F with 2−dimensional base, B = (a, b) ×f ′2 R when
(a, b) with the negative definite metric −dt2, where −∞ ≤ a < b ≤ ∞.
First of all, we study the existence of nonconstant warping functions f
depends on the signs of λ0. As a results, we have some metric g ad-
mits nonconstant warping functions f. Finally, we consider the geodesic
completeness on M.

2. Preliminaries

We denote by RicF be the Ricci curvature of (F, gF ) and RicB be the
Ricci curvature of (B, gB). We denote by RicB and RicF the lifts to M
of Ricci curvatures of B and F, respectively.

Proposition 2.1. The Ricci curvature Ric of the warped product
manifold M = B ×f2 F satisfies

(i) Ric(V,W ) = RicF (V,W ) + g(V,W )[ (
∆f

f
− (p− 1)

||df ||2

f 2
) π ],

(ii) Ric(X, V ) = 0,
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(iii) Ric(X, Y ) = RicB(X, Y )− p

f
Hf (X, Y )

for any vertical vectors V, W and any horizontal vectors X, Y. We are
defined by df is the gradient of f for gB and Hf is the Hessian of f for
gB. We denote by ∆f is the Laplacian of f for gB and p = dimF ([1]).

Corollary 2.2. The warped product M = B ×f2 F is Einstein
manifold (with Ric = λg) if and only if gF , gB and f satisfy

(i) (F, gF ) is Einstein (with RicF = λ0gF ),

(ii)
∆f

f
− (p− 1)

‖df‖2

f 2
+
λ0
f 2

= λ,

(iii) RicB −
p

f
Hf = λgB.

Obviously, (ii) and (iii) are two differential equations for f on (B, gB)([1]).

Remark 2.3. Using Corollary 2.2 (ii) and (iii), we replace the
unique equation

(2.1)

RicB −
p

f
Hf =

1

2
[ sB + 2p

∆f

f
− p(p− 1)

‖df‖2

f 2
+ p

λ0
f 2
− (p+ q− 2)λ ]gB,

where q = dimB.

Proposition 2.4. In the special case of a warped product B ×f2 F
over 2−dimensional base, we have RicB =

1

2
sBgB and q = 2. Hence

equation (2.1) implies that

(2.2) Hf = −1

2
[ 2∆f − (p− 1)

||df ||2

f
+
λ0
f
− λf ]gB.

Lemma 2.5. Let B = (a, b)×f ′(t)2R be 2−dimensional manifold for
t ∈ (a, b) and u ∈ R, where −∞ ≤ a < b ≤ ∞. On (B, gB) the equation
Hf = −f ′′gB admits a nonconstant solution f if and only if, locally at
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points where df 6= 0, there exists local coordinates (t, u) such that f is
a function of t alone.

Proof. By a proof similar Lemma 9.117 in [1], then Hf = −f ′′gB.

With the notations of the Lemma 2.5, we have an ordinary differential
equation for in the variable t

(2.3) 2f ′′(t) + (p− 1)
f ′(t)2

f(t)
+

λ0
f(t)

− λf(t) = 0,

where ‖df‖2 = −[f ′(t)]2 and ∆f = 2f ′′(t).

The following notation and Remark 2.6 are needed to show the geo-
desic completeness.

Notation. Let M = (a, b) ×f1 F1 × · · · ×fm Fm be a Lorentzian
multiply warped product with metric g = −dt2 ⊕ f 2

1 gF1 ⊕ · · · ⊕ f 2
mgFm ,

where −∞ ≤ a < b ≤ ∞. If B = {f1, · · · , fm} and for some k ∈
{1, · · · ,m} and for some subset {f̄1, · · · , f̄k} of B, then

r[f̄1, · · · , f̄k] =
k∏
i=1

f̄i and h[f̄1, · · · , f̄k] =
k∑
i=1

f̄i
2
.

Also, it is assumed that h[f̄1] = 1 for any f̄1([27]).

Remark 2.6. Let M = (a, b) ×f1 F1 × · · · ×fm Fm be a Lorentzian
multiply warped product with metric g = −dt2 ⊕ f 2

1 gF1 ⊕ · · · ⊕ f 2
mgFm ,

where −∞ ≤ a < b ≤ ∞. Suppose that (Fi, gFi) is a complete Riemann-
ian manifold for any i ∈ {1, · · · ,m} and B = {f1, · · · , fm}. Then

every future directed time-like geodesic is future(respectively past) com-

plete if and only if lim
t→b−

∫ t

t1

r[f̄1, · · · , f̄k](s)√
r[f̄1, · · · , f̄k]2(s) + h[f̄1, · · · , f̄k]

ds =∞

(respectively lim
t→a+

∫ t1

t

r[f̄1, · · · , f̄k](s)√
r[f̄1, · · · , f̄k]2(s) + h[f̄1, · · · , f̄k]

ds =∞) for some

t1 ∈ (a, b) and for any k ∈ {1, · · · ,m} and for any subset {f̄1, · · · , f̄k}
of B(cf. Theorem 4.8 in [27]).
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3. The existence of nonconstant warping functions

Let M = (a, b) ×f ′(t)2 R ×f(t)2 F be an Einstein Lorentzian warped
product manifold, where f(t) and f ′(t) are smooth functions and −∞ ≤
a < b ≤ ∞. Let dimF = p > 1.

First of all, if we denote f(t) = z(t)
2
p+1 , then equation (2.3) can be

changed into

(3.1) [z′(t)]2 = −(p+ 1)2 λ0
4(p− 1)

z(t)2−
4
p+1 +

(p+ 1)λ

4
[z(t)]2,

where z(t) is a positive function. Thus we study positive solution z(t)

of equation (3.1).

Theorem 3.1. Suppose that λ0 = 0. If λ is a constant, then there
exists a nonconstant solution z(t) of equation (3.1).

(i) For λ = 0, there does not exist a nonconstant solution of equation
(3.1).

(ii) For λ > 0, we have a solution z(t) = e±
√

(p+1)λ
4

t+c, where c is a
constant.

(iii) For λ < 0, there does not exist a solution of equation (3.1).

Proof. For λ0 = 0, equation (3.1) implies that

(3.2) [z′(t)]2 =
(p+ 1)λ

4
[z(t)]2.

(i) For λ = 0, equation (3.2) implies that [z′(t)]2 = 0 and z′(t) = 0.

An integration gives z(t) = c, where c is a positive constant. Because
z(t) = c is not a nonconstant, thus z(t) = c is not our solution.

(ii) For λ > 0, equation (3.2) implies that we get z′(t) = ±
√

(p+ 1)λ

4
u(t).

An integration gives ln |z(t)| = ±
√

(p+1)λ
4

t+ c, where c is a constant.

Therefore we have z(t) = e±
√

(p+1)λ
4

t+c, where c is a constant.



1138 Soo-Young Lee

(iii) For λ < 0, equation (3.2) implies that [z′(t)]2 < 0. Which is a
contradiction. Hence there does not exist a solution of equation (3.1).

Remark 3.2. Let M be an Einstein Lorentzian warped prod-
uct manifold. From above Theorem 3.1 (ii), for λ0 = 0 and λ > 0,
we have that equation (2.3) satisfies a nonconstant warping function

f(t) = e
±
√

λ
p+1

t+ 2c
p+1 on (−∞,∞), where c is a constant.

Theorem 3.3. Suppose that λ0 > 0. If λ is a constant, then there
exists a nonconstant solution z(t) of equation (3.1).

(i) For λ ≤ 0, there does not exist a solution of equation (3.1).

(ii) For λ > 0, we have z(t) =
(√

(p+1)λ0
(p−1)λ cosh(

√
λ
p+1

t+ c)
) p+1

2

, where

c is a constant.

Proof. (i) For λ ≤ 0, equation (3.1) implies that [z′(t)]2 < 0. Which
is a contradiction. Therefore there does not exist a solution of equation
(3.1).

(ii) For λ > 0, first of all, equation (3.1) implies that we rewritten as∫
1

z(t)
√
− (p+1)2 λ0

4(p−1) z(t)−
4
p+1 + (p+1)λ

4

du = ±
∫

dt.

Putting
(p+ 1)2λ0
4(p− 1)

= I > 0 and
(p+ 1)λ

4
= J > 0, then we get the equa-

tion ∫
1

z(t)

√
J − Iz(t)

−4
p+1

du = ±
∫

dt.

By using trigonometric substitution, z(t)
−2
p+1 =

√
J√
I

sin θ, then we obtain

−
∫

csc θ dθ = ±
∫

2
√
J

p+ 1
dt.
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Upon integration, we become ln | csc θ + cot θ | = ± 2
√
J

p+ 1
t+ c, where

c is a constant. Here we have ln |
√
Jz(t)

2
p+1 +

√
Jz(t)

4
p+1 − I| = ±2

√
J

p+1
t+

c+ ln
√
I, where c is a constant.

Therefore we have z(t) =
(√

(p+1)λ0
(p−1)λ cosh(

√
λ
p+1

t+ c)
) p+1

2

, where c is

a constant.

Remark 3.4. Let M be an Einstein Lorentzian warped product
manifold. From above Theorem 3.3 (ii), for λ0 > 0 and λ > 0, we
have that equation (2.3) satisfies a nonconstant warping function f(t) =√

(p+1)λ0
(p−1)λ cosh(

√
λ
p+1

t+ c ) on
(
−
√

p+1
λ
c, ∞

)
, where c is a constant.

Theorem 3.5. Suppose that λ0 < 0. If λ is a constant, then there
exist nonconstant solutions z(t) of equation (3.1).

(i) For λ = 0, we have z(t) =
(
±
√
−λ0
p−1 t+ 2c

p+1

) p+1
2

, where c is a con-

stant.

(ii) For λ > 0, we get z(t) =
(√

−(p+1)λ0
(p−1)λ sinh(±

√
λ
p+1

t+ c )
) p+1

2

, where

c is a constant.

(iii) For λ < 0, we become z(t) =
(√

(p+1)λ0
(p−1)λ cos(±

√
−λ
p+1

t+ c )
) p+1

2

,

where c is a constant.

Proof. (i) For λ = 0, equation (3.1) implies that we have equation

z′(t) = ±

√
−(p+ 1)2λ0

4(p− 1)
z(t)1−

2
p+1 .

Therefore we have z(t) =
(
±
√
−λ0
p−1 t+ 2c

p+1

) p+1
2

, where c is a con-

stant.

(ii) For λ > 0. By a proof similar to Theorem 3.3 (ii), equation (3.1)
implies that we rewritten as
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∫
1

z(t)
√
− (p+1)2 λ0

4(p−1) z(t)−
4
p+1 + (p+1)λ

4

du = ±
∫

dt.

Putting −(p+ 1)2λ0
4(p− 1)

= I > 0 and
(p+ 1)λ

4
= J > 0, then we have the

equation ∫
1

z(t)

√
Iz(t)

−4
p+1 + J

du = ±
∫

dt.

By using trigonometric substitution, z(t)
−2
p+1 =

√
J√
I

tan θ, then we obtain

−
∫

csc θ dθ = ±
∫

2
√
J

p+ 1
dt.

Therefore we have z(t) =
( √

−(p+1)λ0
(p−1)λ sinh(±

√
λ
p+1

t+ c )
) p+1

2

, where

c is a constant.

(iii) For λ < 0. By a proof similar to Theorem 3.3 (ii) and Theorem 3.5

(ii), putting −(p+ 1)2λ0
4(p− 1)

= I > 0 and −(p+ 1)λ

4
= J > 0, then we have∫

1

z(t)

√
Iz(t)

−4
p+1 − J

du = ±
∫
dt.

By using trigonometric substitution, z(t)
−2
p+1 =

√
J√
I

sec θ, then we get∫
dθ = ±

∫
2
√
J

p+ 1
dt.

Therefore we have z(t) =
(√

(p+1)λ0
(p−1)λ cos(±

√
−λ
p+1

t+ c)
) p+1

2

, where

c is a constant.

Remark 3.6. Let M be an Einstein Lorentzian warped product
manifold. From above Theorem 3.5, we consider that equation (2.3)
satisfies nonconstant warping functions f(t).
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(i) For λ0 < 0 and λ = 0, we become f(t) =

√
−λ0
p− 1

t+
2c

p+ 1

on

(
− 2c

p+ 1

√
p− 1

−λ0
, ∞

)
, where c is a constant.

(ii) For λ0 < 0 and λ > 0, we get f(t) =

√
−(p+ 1)λ0

(p− 1)λ
sinh(

√
λ

p+ 1
t+ c)

on

(
−
√
p+ 1

λ
c, ∞

)
, where c is a constant.

(iii) For λ0 < 0 and λ < 0, we have f(t) =

√
(p+ 1)λ0
(p− 1)λ

cos(

√
−λ
p+ 1

t+ c )

on

(
(2nπ − π

4
− c)

√
p+ 1

−λ
, (2nπ +

3π

4
− c)

√
p+ 1

−λ

)
, where c is a con-

stant and n is a integer.

Remark 3.7. The behaviour of the nonconstant warping functions
depends on the signs of λ0 and λ. Then we reduced to the following sets
of solutions besides the constant case when c = 0 and p > 1 is an integer.

λ0 0 p− 1 −(p− 1) −(p− 1) −(p− 1)

λ p+ 1 p+ 1 0 p+ 1 −(p+ 1)

f(t) e±t cosh(t) t sinh(t) cos(t)

4. The existence and the completeness of some metric

Let M = (a, b) ×f ′(t)2 R ×f(t)2 F be an Einstein Lorentzian warped
product manifold, where f(t) and f ′(t) are smooth functions and −∞ ≤
a < b ≤ ∞. Let dimF = p > 1.

Remark 4.1. From the Remark 3.2, we have positive smooth func-
tions f(t) and f ′(t). Then we have the metric
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g = −dt2 +
λ

p+ 1
e

√
λ
p+1

2t+ 4c
p+1 du2 + e

√
λ
p+1

2t+ 4c
p+1 gF ,

where c is a constant.

Theorem 4.2. Let M be an Einstein Lorentzian warped product
manifold. Suppose that (R, du2) and (F, gF ) are complete. If λ0 = 0
and λ > 0, then on M the resulting metric is that every future directed
time-like geodesics is future (or past) complete.

Proof. For λ0 = 0 and λ > 0, the metric of Remark 4.1 simplifies to

g = −dt2 + α2e2αt du2 + e2αt gF

on (−∞,∞), where α is a positive constant.

Let B = {αeαt, eαt}, where α is a positive constant. For some t1 ∈
(−∞,∞), then

(i)

∫ ∞
t1

αeαt√
α2e2αt + 1

dt ≥
∫ ∞
t1

1√
2
dt = +∞,

(ii)

∫ ∞
t1

eαt√
e2αt + 1

dt ≥
∫ ∞
t1

1√
2
dt = +∞,

(iii)

∫ ∞
t1

αeαteαt√
α2e2αt + e2αt + α2e2αte2αt

dt ≥
∫ ∞
t1

1√
3
dt = +∞, where α is

a positive constant.
Therefore from the Remark 2.6, on M every future directed time-like

geodesic is future complete. On the other hand, by similar methods, on
M every future directed time-like geodesic is past incomplete.

Remark 4.3. From the Remark 3.4, we have positive smooth func-
tions f(t) and f ′(t). Then we have the metric

g = −dt2+
λ0
p− 1

sinh2(

√
λ

p+ 1
t+c) du2+

(p+ 1)λ0
(p− 1)λ

cosh2(

√
λ

p+ 1
t+c) gF ,

where c is a constant.
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Theorem 4.4. Let M be an Einstein Lorentzian warped product
manifold. Suppose that (R, du2) and (F, gF ) are complete. If λ0 > 0
and λ > 0, then on M the resulting metric is that every future directed
time-like geodesics is future (or past) complete.

Proof. For λ0 > 0 and λ > 0, the metric of Remark 4.3 simplifies to

g = −dt2 + α2 sinh2(αt) du2 + cosh2(αt) gF

on (0,∞), where α is a positive constant.

Let B = {α sinh(αt), cosh(αt)}, where α is a positive constant. For
some t1 ∈ (0,∞), then

(i)

∫ ∞
t1

α sinh(αt)√
α2 sinh2(αt) + 1

dt ≥
∫ ∞
t1

1√
2
dt = +∞,

(ii)

∫ ∞
t1

cosh(αt)√
cosh2(αt) + 1

dt ≥
∫ ∞
t1

1√
2
dt = +∞,

(iii)
∫ ∞
t1

α sinh(αt) cosh(αt)√
α2 sinh2(αt) + cosh2(αt) + α2 sinh2(αt) cosh2(αt)

dt ≥
∫ ∞
t1

1√
3
dt

= +∞, where α is a positive constant.

Therefore from the Remark 2.6, on M every future directed time-like
geodesic is future complete but past incomplete.

Remark 4.5. From the Remark 3.6, we have positive smooth func-
tions f(t) and f ′(t). Then we have the metrics.

(i) For λ0 < 0 and λ = 0, we have

g = −dt2 +
−λ0
p− 1

du2 +

(√
−λ0
p− 1

t+
2c

p+ 1

)2

gF ,

where c is a constant.

(ii) For λ0 < 0 and λ > 0, we become
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g = −dt2+
−λ0
p− 1

cosh2(

√
λ

p+ 1
t+c) du2+

−(p+ 1)λ0
(p− 1)λ

sinh2(

√
λ

p+ 1
t+c) gF ,

where c is a constant.

(iii) For λ0 < 0 and λ < 0, we get

g = −dt2 +
−λ0
p− 1

sin2(

√
−λ
p+ 1

t+ c )du2 +
(p+ 1)λ0
(p− 1)λ

cos2(

√
−λ
p+ 1

t+ c ) gF ,

where c is a constant and n is an integer.

Theorem 4.6. Let M be an Einstein Lorentzian warped product
manifold. Suppose that (R, du2) and (F, gF ) are complete. If λ0 < 0
and λ = 0, then on M the resulting metric is that every future directed
time-like geodesic is future (or past) complete.

Proof. For λ0 < 0 and λ = 0, from the Remark 4.5 (i), the warping
function f(t) is a linear function and f ′(t) is a constant function. Because
f ′(t) is not a nonconstant, thus we can not discuss geodesic complete.

Theorem 4.7. Let M be an Einstein Lorentzian warped product
manifold. Suppose that (R, du2) and (F, gF ) are complete. If λ0 < 0
and λ > 0, then on M the resulting metric is that every future directed
time-like geodesic is future (or past) complete.

Proof. For λ0 < 0 and λ > 0, the metric of Remark 4.5 (ii) simplifies
to

g = −dt2 + α2 cosh2(αt) du2 + sinh2(αt) gF ,

on (0,∞), where α is a positive constant.

Let B = {α cosh(αt), sinh(αt)}, where α is a positive constant. By
a proof similar to Theorem 4.4, for some t1 ∈ (0,∞), from the Remark
2.6 implies that on M every future directed time-like geodesic is future
complete but past incomplete.
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Theorem 4.8. Let M be an Einstein Lorentzian warped product
manifold. Suppose that (R, du2) and (F, gF ) are complete. If λ0 < 0
and λ < 0, then on M the resulting metric is that every future directed
time-like geodesic is not future (or past) complete.

Proof. For λ0 < 0 and λ < 0, from the Remark 4.5 (iii), we have

f(t) = cos
(√

−λ
p+1

t+ c
)

and f ′(t) =
√
−λ
p+1

sin
(√

−λ
p+1

t+ c
)
, where c

is a constant. Because we can consider the existence of a nonconstant
warping function on only a finite interval, thus we can not discuss the
completeness.

Remark 4.9. Let M = (a, b) ×f ′(t)2 R ×f(t)2 F be an Einstein
Lorentzian warped product manifold. The behaviour of the metrics de-
pends on the signs of λ0 and λ. Then we reduced to the following sets
of metrics besides the constant case when c = 0 and p > 1 is an integer.

λ0 λ metric

(i) 0 p+ 1 g = −dt2 + e2tdu2 + e2tgF

(ii) p− 1 p+ 1 g = −dt2 + sinh2 t du2 + cosh2 t gF

(iii) −(p− 1) 0 g = −dt2 + du2 + t2gF

(iv) −(p− 1) p+ 1 g = −dt2 + cosh2 t du2 + sinh2 t gF

(v) −(p− 1) −(p+ 1) g = −dt2 + sin2 t du2 + cos2 t gF
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