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SIMPLIFYING COEFFICIENTS IN A FAMILY OF

ORDINARY DIFFERENTIAL EQUATIONS RELATED

TO THE GENERATING FUNCTION OF THE

MITTAG–LEFFLER POLYNOMIALS

Feng Qi

Abstract. In the paper, by virtue of the Faà di Bruno formula,
properties of the Bell polynomials of the second kind, and the Lah
inversion formula, the author simplifies coefficients in a family of
ordinary differential equations related to the generating function of
the Mittag–Leffler polynomials.

1. Motivation and main results

In [4, Theorem 2.2], it was established inductively and recursively
that the family of differential equations

F (n)(t) =
F (t)

(1− t)n

n∑
i=1

ai(n)
〈x〉i

(1 + t)i
, n ∈ N (1)

has a solution

F (t) =

(
1 + t

1− t

)x

, (2)
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where a1(n) = 2n!,

ai(n) = 2i

n−i∑
ki−1=0

n−i−ki−1∑
ki−2=0

· · ·
n−i−ki−1−···−k2∑

k1=0

i∏
`=2

〈
n− i− 1 + 2`−

i−1∑
j=`

kj

〉
k`−1

(
n− i + 1−

i−1∑
j=1

kj

)
! (3)

for 2 ≤ j ≤ n,

〈x〉n =
n−1∏
k=0

(x− k) =

{
x(x− 1) · · · (x− n + 1), n ≥ 1

1, n = 0

is the falling factorial, and the function F (t) in (2) can be used to gen-
erate the Mittag-Leffler polynomials Mn(x) by

F (t) =

(
1 + t

1− t

)x

=
∞∑
n=0

Mn(x)
tn

n!
.

Hereafter, the expression (3) was employed in [4, Theorem 3.1].
It is not difficult to see that

1. the expression (3) is too complicated to be remembered, under-
stood, and computed easily;

2. the original proof of [4, Theorem 2.2] is long and tedious.

In this paper, we will provide a nice and standard proof for [4, The-
orem 2.2] and, more importantly, discover a simple, meaningful, and
significant form for ai(n).

Our main results can be stated as the following theorem.

Theorem 1. For n ≥ 0, the function F (t) defined by (2) satisfies

F (n)(t) =
n!

(1− t)n

[
n∑

k=0

2k

k!

(
n− 1

k − 1

)
〈x〉k

(1 + t)k

]
F (t) (4)

and
n∑

k=0

(−1)k

k!

(
n− 1

k − 1

)
(1− t)kF (k)(t) =

2n〈x〉n
n!(1 + t)n

F (t) (5)

where
(−1
−1

)
= 1 and

(
k
−1

)
= 0 if k ≥ 0.
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2. Proof of Theorem 1

The Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) for
n ≥ k ≥ 0 are defined [3, p. 134, Theorem A] and [3, p. 139, Theorem C]
by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1
`i∈{0}∪N∑n−k+1
i=1 i`i=n∑n−k+1
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi

i!

)`i
.

The famous Faà di Bruno formula reads that

dn

d tn
f ◦ h(t) =

n∑
k=0

f (k)(h(t)) Bn,k

(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
(6)

for n ≥ 0. The function F (t) in (2) can be rearranged as

F (t) =

(
2

1− t
− 1

)x

.

Applying u = h(t) = 2
1−t − 1 and f(u) = ux to (6) gives

F (n)(t) =
n∑

k=0

dk ux

duk
Bn,k

(
1!2

(1− t)2
,

2!2

(1− t)3
, . . . ,
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(1− t)n−k+2

)

=
n∑

k=0

〈x〉kux−k2k

(
1

1− t

)n+k

Bn,k(1!, 2!, . . . , (n− k + 1)!)

=
n∑

k=0

〈x〉k
(

2

1− t
− 1

)x−k

2k

(
1

1− t

)n+k
n!

k!

(
n− 1

k − 1

)

=
n∑

k=0

〈x〉k
(

1 + t

1− t

)x−k

2k

(
1

1− t

)n+k
n!

k!

(
n− 1

k − 1

)
,

where we used the identities

Bn,k

(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbn Bn,k(x1, x2, . . . , xn−k+1)

and

Bn,k(1!, 2!, . . . , (n− k + 1)!) =
n!

k!

(
n− 1

k − 1

)
in [3, p. 135] and [7, Remark 3.5]. The formula (4) is thus proved.
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The Lah inversion theorem in [1, p. 96, Corollary 3.38 (iii)] and [2,
pp. 60–61, Exercise 2.9] reads that

(−1)nan =
n∑

k=0

n!

k!

(
n− 1

k − 1

)
bk

if and only if

(−1)nbn =
n∑

k=0

n!

k!

(
n− 1

k − 1

)
ak.

Combining this Lah inversion theorem with (4) arrives at

2n〈x〉n
(1 + t)n

F (t) =
n∑

k=0

(−1)k
n!

k!

(
n− 1

k − 1

)
(1− t)kF (k)(t)

which can be rewritten as (5). The proof of Theorem 1 is complete.

3. Remarks

Finally, we list several remarks on our main results and closely related
things.

Remark 1. Comparing (1) with (4) reveals that

ak(n) = 2kn!

k!

(
n− 1

k − 1

)
for n ≥ k ≥ 0. This form for ak(n) is apparently simpler, more meaning-
ful, and more significant than the one (3) obtained in [4, Theorem 2.2].

Remark 2. The motivations in the papers [5,6,8–13,15–29] are same
as the one in this paper.

Remark 3. This paper is a modified version of the preprint [14].
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