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ON THE GENERALIZED BANACH SPACES

Buhyeon Kang

Abstract. For any non-negative real number ε0, we shall introduce
a concept of the ε0-Cauchy sequence in a normed linear space V
and also introduce a concept of the ε0-completeness in those spaces.
Finally we introduce a concept of the generalized Banach spaces with
these concepts.

1. Introduction

In this section, we briefly introduce the concept of the generalized
limits of the multi-valued sequences and functions on the normed spaces
which we need later. Let’s denote by B(x, ε) (resp. B(x, ε)) the open
(resp. closed) ball in the normed linear space V with radius ε and center
at x.

Definition 1.1. Let {xn} be a multi-valued infinite sequence of el-
ements of the normed linear space (V, ‖ · ‖). And let ε0 ≥ 0 be a fixed
non-negative real number. If a subset S of V satisfies the following con-
dition, we call that the ε0 generalized limit (or ε0-limit) of {xn} as n

goes to∞ is S, and we denote it by ε0 − lim
n−→∞

xn = S : S is the set of all

the vectors α ∈ V satisfying the condition

∀ε > ε0,∃K ∈ N s.t.(∀n ∈ N)n ≥ K, (∀xn)⇒ ‖xn − α‖ < ε.
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If the set S in the definition above is not empty we say that {xn}
is an ε0-convergent sequence or ε0-converges to S. We also define that
any member α ∈ S is an approximate value of the generalized limit of
{xn} with the limit of the error ε0. Then we can regard α ∈ S as the
approximate value of the limit of {xn} whether {xn} converges in the
usual sense or not. From now on, V 6= {0} denotes a normed linear
space.

Definition 1.2. Let {xn} be a multi-valued infinite sequence in V .
We define that {xn} is ultimately bounded if and only if there exist real
numbers K and M such that (∀n ∈ N)n ≥ K, ∀xn ⇒ ‖xn‖ ≤M.

Lemma 1.3. (Representation) Let {xn} be a multi-valued infinite se-
quence in the normed linear space V 6= {0} which satisfies the Heine-
Borel property. And let ε0 ≥ 0 be a non-negative real number. Suppose

that {xn} is ultimately bounded. If ε0 − lim
n−→∞

xn = S then S is a convex

and compact subset of V such that S = ∩
α∈SSL

B(α, ε0). Here

SSL = SSL({xn}) = {α ∈ V |∃{xnk} ≤ {xn} s.t. lim
k→∞

xnk = α}

and {xnk} ≤ {xn} means that {xnk} is a single-valued subsequence of
{xn}.

Proof. (⊆) Let any element β ∈ S 6= ∅ be given. Then

∀ε > ε0,∃K1 ∈ N s.t.(∀n ∈ N)n ≥ K1, (∀xn)⇒ ‖xn − β‖ < ε0 +
ε− ε0

2
.

If α ∈ SSL is any element, then there exists a single-valued and conver-
gent subsequence {xnk} such that lim

k→∞
xnk = α. Thus we have

∀ε > ε0,∃K2 ∈ N s.t.(∀k ∈ N)k ≥ K2 ⇒ ‖xnk − α‖ <
ε− ε0

2
.

Choosing a natural number K = max{K1, K2}, we have

‖β − α‖ = ‖β − xnK + xnK − α‖
≤ ‖β − xnK‖+ ‖xnK − α‖

< ε0 +
ε− ε0

2
+
ε− ε0

2
= ε.

Since ε > ε0 was arbitrary, we have ‖β −α‖ ≤ ε0. That is, β ∈ B(α, ε0).
Since α ∈ SSL was arbitrary, we have β ∈ ∩

α∈SSL
B(α, ε0). Since β ∈ S
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was also arbitrary, we have S ⊆ ∩
α∈SSL

B(α, ε0). (⊇) Since V 6= {0},
S 6= V since {xn} is ultimately bounded. In order to show that the
opposite inclusion is also satisfied, let β /∈ S be any element of V −S 6= ∅.
Then we have

∃ε1 > ε0 s.t.(∀k ∈ N, ∃nk ∈ N,∃xnk s.t. ‖xnk − β‖ ≥ ε1).

Since {xn} is ultimately bounded, {xnk} is a bounded sequence in V .
Thus {xnk : k ∈ N} is a subset of some closed bounded ball B̄(x, r) for
some x ∈ V and r > 0. Since V satisfies the Heine-Borel property, the
closed ball B̄(x, r) is a compact subset of V . Since {xnk} is a sequence
in the compact set B̄(x, r), there is a convergent subsequence {xnkp} of

{xnk}. Hence we may assume that lim
p→∞

xnkp = α0 for some α0 ∈ V . Then

we have, for such an ε1 > ε0,

∃K ∈ N s.t. p ≥ K ⇒ ‖xnkp − α0‖ <
ε1 − ε0

2
.

Therefore, we have

‖β − α0‖ = ‖β − xnkK + xnkK − α0‖
≥ ‖β − xnkK ‖ − ‖xnkK − α0‖

> ε1 −
ε1 − ε0

2
=
ε1 + ε0

2
.

Since the last quantity satisfies the relation ε1+ε0
2

> ε0, this implies that

β /∈ B(α0, ε0). Since α0 ∈ SSL, this also implies that β /∈ ∩
α∈SSL

B(α, ε0).

Hence ∩
α∈SSL

B(α, ε0) ⊆ S. Consequently, we have S = ∩
α∈SSL

B(α, ε0).

On the other hand, since S is the intersection of the closed balls B(α, ε0)
which are bounded, closed and convex, S is convex and compact in V . Fi-
nally, if S = ∅ then S is clearly convex and compact, and ∩

α∈SSL
B(α, ε0) ⊆

S = ∅.

Note in the lemma above that if SSL = {a} for some a ∈ V then we

have ε0 − lim
n−→∞

xn = B(a, ε0) for all ε0 ≥ 0.

Lemma 1.4. Let {xn} be a multi-valued infinite sequence in the
normed linear space V which satisfies the Heine-Borel property and
ε0 ≥ 0. Suppose that {xn} is ultimately bounded. Then the set SSL
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of all the single-valued subsequential limits of {xn} is a non-empty and
compact subset of V .

Proof. The ultimate boundedness of the sequence {xn} implies that
the set SSL is non-empty and bounded since V satisfies the Heine-Borel
property. In order to verify that SSL is a closed subset of V , let any
member α ∈ SSL be given. If α is an element of SSL then we are done.
Suppose that α 6∈ SSL. Then α must be an accumulation point of the
set SSL. By means of choosing the open balls B(α, 1

k
) for all natural

numbers k ∈ N , we have a single-valued sequence {αk} ⊆ SSL such that
lim
k→∞

αk = α. Since the first term α1 of the sequence {αk} is an element

of SSL, there is one value, say xn1 , of the multi-valued term xn1 in {xn}
such that ‖xn1 − α1‖ < 1. Similarly, since α2 ∈ SSL, there is one value,
say xn2 , of the multi-valued term xn2 in {xn} such that ‖xn2 − α2‖ < 1

2
and n2 > n1. By applying those methods, we can inductively choose a
single-valued subsequence {xnk} of {xn} such that ‖xnk − αk‖ < 1

k
for

all natural number k ∈ N . Since ‖xnk − α‖ ≤ ‖xnk − αk‖ + ‖αk − α‖,
if we take the limit on both sides we have lim

k→∞
xnk = α. Thus we have

α ∈ SSL which completes the proof.

Definition 1.5. Let D be a subset of a normed space V and f : D →
W be a multi-valued function into the normed space W . We define that
f is ε0-uniformly continuous on D if and only if we have

∀ε > ε0,∃δ > 0 s.t. (∀x, y ∈ D)‖x− y‖ < δ,∀f(x),∀f(y)

⇒ ‖f(x)− f(y)‖ < ε.

2. The generalized Banach space

In this section, we define the concept of the ε0 generalized complete-
ness of a set and the concept of the ε0 generalized Banach space. In
this section, V denotes a normed linear space and ε0 denotes a fixed
non-negative real number.

Definition 2.1. Let {xn} be a multi-valued sequence in V . We define
that {xn} is an ε0-Cauchy sequence if and only if

∀ε > ε0,∃K ∈ Ns.t.(∀m,n)m,n ≥ K, ∀xm,∀xn ⇒ ‖xm − xn‖ < ε.

Note that it is easy to prove that any ε0-Cauchy sequence is ultimately
bounded.
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Definition 2.2. Let S be any non-empty subset of V . Then we

define that S is ε0-complete in V if and only if ε0 − lim
n−→∞

xn ∩ S 6= ∅ for

any ε0-Cauchy sequence {xn} in S.

Lemma 2.3. Let V be a normed linear space which satisfies the Heine-
Borel property, and let {xn} be an ε0-Cauchy sequence in V . Then we
have

SSL ⊆ ε0 − lim
n−→∞

xn.

Proof. Let {xn} be the given ε0-Cauchy sequence in V . Then we have

∀ε > ε0,∃K ∈ N s.t. (∀m,n)m,n ≥ K, ∀xm,∀xn

=⇒ ‖xm − xn‖ < ε0 +
ε− ε0

2

since ε0 + ε−ε0
2

> ε0. Since V satisfies the Heine-Borel property, we have
SSL 6= ∅. Suppose that α ∈ SSL. Then there is a single-valued and
convergent subsequence {xnk} of {xn} such that lim

k→∞
xnk = α. Since

nk ≥ k, we have, by replacing xn to xnk ,

∀ε > ε0,∃K ∈ N s.t. (∀m, k)m, k ≥ K, ∀xm

=⇒ ‖xm − xnk‖ < ε0 +
ε− ε0

2
.

For each fixed term number m and each value of xm, by taking the limit
as k goes to ∞, we have

∀ε > ε0,∃K ∈ N s.t. (∀m)m ≥ K, ∀xm

=⇒ ‖xm − α‖ ≤ ε0 +
ε− ε0

2
=
ε+ ε0

2
< ε.

Thus we have α ∈ ε0 − lim
n−→∞

xn. Consequently, SSL ⊆ ε0 − lim
n−→∞

xn.

Corollary 2.4. Let {xn} be an ε0-Cauchy sequence in a normed
linear space V which satisfies the Heine-Borel property. If we denote by
hull(SSL) the convex hull of SSL then hull(SSL) 6= ∅ and

hull(SSL) ⊆ ε0 − lim
n−→∞

xn = ∩
α∈SSL

B(α, ε0).

Proof. Since the convex hull of SSL is the smallest convex subset of
V which contains the set SSL, this corollary follows from lemmas 1.3,
2.3 and the convex property of the ε0-limit.
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Lemma 2.5. Let {xn} be an ε0-Cauchy sequence in a normed linear
space V . If α, β ∈ SSL then ‖α− β‖ ≤ ε0. Hence the diameter of SSL
is less than or equal to ε0.

Proof. Since {xn} is an ε0-Cauchy sequence in V , we have

∀ε > ε0,∃K ∈ N s.t. (∀m,n)m,n ≥ K, ∀xm,∀xn

=⇒ ‖xm − xn‖ < ε0 +
ε− ε0

2

since ε0 + ε−ε0
2

> ε0. And since α, β ∈ SSL, there are two single-
valued and convergent subsequences {xmk} and {xnk} of {xn} such that
lim
k→∞

xmk = α and lim
k→∞

xnk = β. Since mk, nk ≥ k, we have

∀ε > ε0,∃K ∈ Ns.t.(∀k)k ≥ K =⇒ ‖xmk − xnk‖ < ε0 +
ε− ε0

2
.

If we take the limit as k goes to ∞, we have

‖α− β‖ ≤ ε0 +
ε− ε0

2
=
ε+ ε0

2
< ε.

Since ε > ε0 was arbitrary, this implies that ‖α − β‖ ≤ ε0. Hence the
diameter of SSL is less than or equal to ε0.

Theorem 2.6. Let {xn} be an ε0-Cauchy sequence in a normed lin-
ear space V which satisfies the Heine-Borel property. If ε0 > 0 and
diam(SSL({xn})) = d then there exists an open convex subset G of V
such that

hull(SSL) ∩G 6= ∅ and G ⊆ ε0 − lim
n−→∞

xn.

Proof. Since {xn} is ultimately bounded, SSL is non-empty and com-
pact by lemma 1.4. Hence there is a point α ∈ SSL. If SSL = {α} is a
singleton then we choose the open set G as G = B(α, ε0). Then we have

hull(SSL) ∩ G = {α} 6= ∅ and G = B(α, ε0) = ε0 − lim
n−→∞

xn. Suppose

that SSL is not a singleton. Then hull(SSL) is not a singleton, too, and
has the same diameter. Hence there are two points α, β ∈ hull(SSL)
such that ‖α − β‖ = d > 0 since hull(SSL) is also compact and
diam(hull(SSL)) = d > 0. For each element x ∈ T = B(α, d)∩B(β, d),
the quantity sup{‖y−x‖ : y ∈ hull(SSL)} is a non-negative real number
since hull(SSL) is compact. Hence the infimum r = inf{sup{‖y − x‖ :
y ∈ hull(SSL)} : x ∈ T} exists. At the first step, we will prove
that this infimum r is less than the diameter d of hull(SSL). Assume
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that r ≥ d. Then we have sup{‖y − x‖ : y ∈ hull(SSL)} ≥ d for
all x ∈ T . In particular, we have sup{‖y − γ‖ : y ∈ hull(SSL)} ≥
d. Here γ = α+β

2
. Since γ is the center point of the line segment

αβ ⊆ hull(SSL), we must have sup{‖y − γ‖ : y ∈ hull(SSL)} = d.
Since hull(SSL) is compact, there is a point yγ ∈ hull(SSL) such that
‖yγ − γ‖ = sup{‖y − γ‖ : y ∈ hull(SSL)} = d. Thus yγ ∈ ∂(B(γ, d)).

Now consider the midpoint η = γ+yγ
2

. Since η is a point of the set T ,
we also have sup{‖y − η‖ : y ∈ hull(SSL)} ≥ r ≥ d by the assumption
r ≥ d. And there is an element yη ∈ hull(SSL) such that ‖yη − η‖ =
sup{‖y−η‖ : y ∈ hull(SSL)} ≥ r ≥ d since hull(SSL) is compact. But
we have yη ∈ [B(γ, d)−B(η, d)] and this set B(γ, d)−B(η, d) is disjoint
from the closed ball B(yγ, d). For if z ∈ B(γ, d) − B(η, d) ∩ B(yγ, d),
then we have ‖z − γ‖ ≤ d, ‖z − η‖ > d and ‖z − yγ‖ ≤ d which is

a contradiction since η = γ+yγ
2

. Thus we have ‖yη − yγ‖ > d which
is a contradiction with the fact that diam(hull(SSL)) = d. There-
fore, the infimum r must satisfy the relation r < d. And this infi-
mum is in fact the minimum of that set since hull(SSL) and T are
compact. Hence there is a point x0 ∈ T and is the minimum real
number r0 such that 0 < r0 < d and hull(SSL) ⊆ B(x0, r0). At
the next step, since the number r0 is the minimal number such that
r0 = inf{sup{‖y − x0‖ : y ∈ hull(SSL)} : x0 ∈ T}, it is obvi-
ous that x0 can be chosen so that x0 ∈ hull(SSL). Then we have
hull(SSL) ∩ B(x0, r0) 6= ∅ and SSL ⊆ B(x0, r0). Moreover, by taking
G = B(x0, ε0 − r0), we have

G = B(x0, ε0 − r0) = ∩
α∈B(x0,r0)

B(α, ε0)

⊆ ∩
α∈SSL

B(α, ε0)

= ε0 − lim
n−→∞

xn

which completes the proof.

Corollary 2.7. If D ⊆ Rm satisfies ∪
b∈D

B(b,
{

1−
√
3
2

}
ε0) = Rm

then D is ε0-complete.

Proof. At first, assume that ε0 = 0 and let any 0-Cauchy sequence
{xn} be given. Then any single-valued subsequence of {xn} is a Cauchy
sequence in the usual sense. Since Rm is complete in the usual sense
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and {xn} is a 0-Cauchy sequence, the set of all the subsequential limits
SSL({xn}) must be a singleton. Thus {xn} is a 0-convergent sequence.
Now suppose that ε0 > 0 and any ε0-Cauchy sequence {xn} in D be
given. If hull(SSL) = {α} is a singleton, then the ε0-limit of {xn} is
B(α, ε0) which implies that the sequence {xn} is ε0-convergent. Suppose
that hull(SSL) is not a singleton. At the first step, we will show that the

minimum r0 in the theorem just above satisfies the inequality r0 ≤
√
3
2
d

if the diameter of hull(SSL(xn)) is d for an ε0-Cauchy sequence {xn} in
D. Since hull(SSL) is not a singleton, there are two distinct elements
x0, y0 ∈ hull(SSL) such that ‖x0− y0‖ = d since hull(SSL) is compact.
By an appropriate rotation and translation of the axes and the origin
in the usual Euclidean coordinate system of Rm, we may assume that
x0 = (−d

2
, 0, · · · , 0), y0 = (d

2
, 0, · · · , 0) and x0+y0

2
= (0, 0, · · · , 0). Then

we must have

hull(SSL) ⊆ B(x0, d) ∩B(y0, d)

since diam(hull(SSL)) = d. But the equation of the most far bound-
ary from the origin of the intersection of the boundaries ∂B(x0, d) and
∂B(y0, d) is given by

(x1 −
d

2
)2 + x22 + · · ·+ x2m = d2 = (x1 +

d

2
)2 + x22 + · · ·+ x2m.

That is, we have

x1 = 0, x22 + · · ·+ x2m =
3

4
d2.

Thus the distance between the origin and the boundary of the intersec-
tion B(x0, d) ∩B(y0, d) satisfies the inequality

dist(0, ∂
{
B(x0, d) ∩B(y0, d)

}
) ≤
√

3

2
d.

Hence hull(SSL) is contained in the closed ball with the radius
√
3
2
d.

Then, by the theorem just above, there is a point x ∈ hull(SSL) and

exists a real number r0 ≤
√
3
2
d such that B(x, ε0 − r0) ⊆ ε0 − lim

n−→∞
xn.

But we have

ε0 − r0 ≥ ε0 −
√

3

2
d ≥ ε0 −

√
3

2
ε0 = (1−

√
3

2
)ε0.
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Since this inequality implies that B(x, (1 −
√
3
2

)ε0) ⊆ B(x, ε0 − r0), we

have D ∩ B(x, ε0 − r0) 6= ∅ which implies that {xn} is an ε0-convergent
sequence. Therefore, D is ε0-complete.

Note that if V is a normed linear space which satisfies the Heine-Borel
property and ε0 > 0, then any dense subset D of V in the usual sense is
ε0-complete since D ∩B(x, r) 6= ∅ for all x ∈ V and all r > 0.

Theorem 2.8. Let V be a normed linear space which satisfies the
Heine-Borel property. Then any closed subset D of V is ε0-complete for
all ε0 ≥ 0.

Proof. Suppose that D is a closed subset of V and let any ε0-Cauchy
sequence {xn} ⊆ D be given. By corollary 2.4, we have

SSL ⊆ ε0 − lim
n−→∞

xn.

But the set SSL({xn}) 6= ∅ since {xn} is ultimately bounded. Since
SSL ⊆ D, this implies that

∅ 6= SSL ⊆ D ∩ ε0 − lim
n−→∞

xn.

But we have D = D since D is closed. Thus D is ε0-complete for all
ε0 ≥ 0.

Corollary 2.9. Let V be a normed linear space which satisfies the
Heine-Borel property. Let D 6= ∅ be a subset of V and a real number
ε0 ≥ 0 be given. If D is ε0-complete then D is ε0-complete. But the
converse is not true in general.

Proof. By the theorem just above, it is clear that D is ε0-complete.
Now consider the subset D of R given by

D = {− 1

n
, 1 +

1

n
: n ∈ N}.

Then D = D ∪ {0, 1} is 1-complete since it is closed. But if we choose
a sequence {xn} such that x2n = − 1

2n
and x2n−1 = 1 + 1

2n−1 for each
n ∈ N then SSL({xn}) = {0, 1}. Hence we have

ε0 − lim
n−→∞

xn = ∩
α∈{0,1}

B(α, 1) = [0, 1].

Since D ∩ [0, 1] = ∅, D is not 1-complete.
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Theorem 2.10. Let V be a normed linear space which satisfies the
Heine-Borel property. Then any convex subset D of V is ε0-complete for
all ε0 > 0.

Proof. Suppose that D is a convex subset of V . Since ∅ is ε0-complete,
we may assume that D 6= ∅. And let any ε0-Cauchy sequence {xn} ⊆ D
be given. Since {xn} is also an ε0-Cauchy sequence in D which is ε0-
complete by theorem 2.8, we have

∅ 6= hull(SSL) ⊆ D ∩ ε0 − lim
n−→∞

xn = D ∩ ∩
α∈SSL

B(α, ε0)

since D is also convex. If D ∩ hull(SSL) 6= ∅ then we are done since
the intersection of D and the ε0-limit of {xn} is not an empty set. Now
suppose that D ∩ hull(SSL) = ∅. Then hull(SSL) is a subset of the
derived set D′, the set of all the accumulation points of D. That is, it is
a subset of the set D′−D. By the theorem 2.6, there is an open convex
subset G of V such that

hull(SSL) ∩G 6= ∅ and G ⊆ ε0 − lim
n−→∞

xn.

Choose a point α ∈ hull(SSL)∩G. Then α ∈ D′−D and α ∈ G. Since
G is an open set containing the accumulation point α of D, there is a
point β ∈ D such that β ∈ G and β 6= α. Then

β ∈ D ∩G ⊆ D ∩ ∩
α∈SSL

B(α, ε0).

Thus D ∩ ε0 − lim
n−→∞

xn 6= ∅ which completes the proof.

Note that the convex subset of V is not 0-complete in general.

Proposition 2.11. (1) The union of the ε0-complete subsets does not
need to be ε0-complete. (2) The intersection of the ε0-complete subsets
does not need to be ε0-complete.

Proof. (1) LetD1 = {− 1
n

: n ∈ N} andD2 = {1+ 1
n

: n ∈ N}. In order
to prove that D1 is 1-complete, let any 1-Cauchy sequence {xn} ⊆ D1

be given. Then SSL({xn}) 6= ∅ and SSL ⊆ D1 ∪ {0}. Hence we have

[−1, 0] ⊆ ∩
α∈D1∪{0}

B(α, 1) ⊆ ∩
α∈SSL

B(α, 1) = 1− lim
n−→∞

xn.
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Thus the intersection of D1 and the 1-limit of {xn} is not an empty set.
Hence D1 is 1-complete. Since the diameter of D2 is 1, we can prove by
the same method that D2 is also 1-complete. But the union

D1 ∪D2 = {− 1

n
, 1 +

1

n
: n ∈ N}

is not 1-complete as in the proof of corollary 2.9. (2) LetD1 = {− 1
n
, 0, 1+

1
n

: n ∈ N} and D2 = {− 1
n
, 1, 1 + 1

n
: n ∈ N}. In order to prove that D1

is 1-complete, let any 1-Cauchy sequence {xn} ⊆ D1 be given. Since the
diameter of SSL satisfies the inequality Diam(SSL) ≤ 1, the following
three cases occur.

(i) ∅ 6= SSL = {0, 1},

(ii) ∅ 6= SSL ⊆ {− 1

n
, 0 : n ∈ N},

(iii) ∅ 6= SSL ⊆ {1 +
1

n
, 1 : n ∈ N}.

(i) If SSL = {0, 1} then D1 ∩ 1− lim
n−→∞

xn = D1 ∩ [0, 1] = {0} 6= ∅. (ii) If

SSL ⊆ {− 1
n
, 0 : n ∈ N} then D1 ∩ 1− lim

n−→∞
xn ⊇ {− 1

n
, 0 : n ∈ N} 6= ∅.

(iii) If SSL ⊆ {1 + 1
n
, 1 : n ∈ N} then D1 ∩ 1− lim

n−→∞
xn ⊇ {1 + 1

n
: n ∈

N} 6= ∅. Therefore, D1 is 1-complete. On the other hand, we can prove
by the same method that D2 is also 1-complete. But the intersection

D1 ∩D2 = {− 1

n
, 1 +

1

n
: n ∈ N}

is not 1-complete as in the proof of (1).

Proposition 2.12. Let V be a normed linear space which satisfies the
Heine-Borel property and let ε0 > 0 be a positive real number. If a subset
D of V is not ε0-complete then there is an ε0-Cauchy sequence {xp} such
that hull(SSL) ∩ B(γ, r) 6= ∅, SSL ∩ B(γ, r) = ∅ and diam(SSL) = ε0
for some γ ∈ V and some positive real number r > 0. Moreover, SSL
satisfies the following condition.

∀α ∈ SSL, ∃β ∈ SSL s.t. ‖α− β‖ = ε0.

Proof. Suppose that D is not ε0-complete. Then there is an ε0-Cauchy

sequence {xp} in D such that D∩ ε0 − lim
p−→∞

xp = ∅. If hull(SSL)∩D 6= ∅
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then we have

∅ 6= D ∩ hull(SSL) ⊆ D ∩ { ∩
α∈SSL

B(α, ε0)} ⊆ D ∩ ε0 − lim
p−→∞

xp.

This is a contradiction. Hence hull(SSL) ∩D = ∅ and SSL ⊆ D′ −D
since SSL ⊆ D. On the other hand, there is an element γ and is a real
number r > 0 by theorem 2.6 such that

hull(SSL) ∩B(γ, r) 6= ∅ and B(γ, r) ⊆ ∩
α∈SSL

B(α, ε0).

It is obvious that D ∩ B(γ, r) = ∅. And if SSL ∩ B(γ, r) 6= ∅ then
there exists an element α0 ∈ SSL ⊆ D′ − D such that α0 ∈ B(γ, r).
Since α0 is an accumulation point of D and B(γ, r) is an open set,
there exists an element x ∈ D such that x ∈ B(γ, r). Hence we have
D∩{ ∩

α∈SSL
B(α, ε0)} 6= ∅ which is a contradiction. Hence we have SSL∩

B(γ, r) = ∅. Now suppose that there is an element α0 ∈ SSL such that
‖α0 − β‖ < ε0 for all elements β ∈ SSL. Then we have

max{‖α0 − β‖ : β ∈ SSL} = r0 < ε0

since SSL is compact. Then we have

α0 ∈ B(α0, ε0 − r0) ⊆ ∩
α∈SSL

B(α, ε0).

Since α0 ∈ D′ −D and B(α0, ε0 − r0) is an open set containing α0, we
have D ∩B(α0, ε0− r0) 6= ∅. This is a contradiction as the above. Since
the diameter of SSL is not greater than ε0, this contradiction implies
that

∀α ∈ SSL, ∃β ∈ SSL s.t. ‖α− β‖ = ε0

and diam(SSL) = ε0.

Theorem 2.13. Let D be a non-empty subset of a normed linear
space V which satisfies the Heine-Borel property and let ε0 > 0. Then
D is not ε0-complete if and only if there is a compact subset S of D′−D
such that diam(S) = ε0 and D ∩ { ∩

α∈S
B(α, ε0)} = ∅.

Proof. (⇒) Suppose that D is not ε0-complete. Then we have an

ε0-Cauchy sequence {xp} such that D ∩ ε0 − lim
p−→∞

xp = ∅. As in the

proof of the proposition just above, we have SSL({xp}) ⊆ D′ −D and
diam[SSL] = ε0. Now put S = SSL({xp}). Then S is compact by
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lemma 1.4. And diam(S) = ε0 and S ⊆ D′ − D as in the proof of the
proposition just above. Moreover,

D ∩ { ∩
α∈S

B(α, ε0)} = D ∩ { ∩
α∈SSL

B(α, ε0)} = ∅

since ∩
α∈SSL({xp})

B(α, ε0) = ε0 − lim
p−→∞

xp. (⇐) Suppose that there exists

a compact subset S of D′ − D such that D ∩ { ∩
α∈S

B(α, ε0)} = ∅ and

diam(S) = ε0. Since S ⊆ D′ − D, for each α ∈ S, there is a single-
valued sequence {xαp} in D such that ‖xαp − α‖ < 1

p
for each p ∈ N .

In order to verify that D is not ε0-complete, let’s choose a multi-valued
sequence {xp} so that xp = {xαp : α ∈ S} for each p ∈ N . In order to
show that {xp} is an ε0-Cauchy sequence, let any positive number ε > ε0
be given. Choosing a natural number K ∈ N so large that K > 2

ε−ε0 ,

we have, since ‖α− β‖ ≤ ε0 for all α, β ∈ S,

∀ε > ε0, ∃ K ∈ N s.t. (∀p, q)p, q ≥ K, ∀xαp ∈ xp,∀xβq ∈ xq
⇒ ‖xαp − xβq‖ ≤ ‖xαp − α‖+ ‖α− β‖+ ‖β − xβq‖

≤ 1

p
+ ε0 +

1

q
≤ 2

K
+ ε0

< ε− ε0 + ε0 = ε.

Thus the sequence {xp} is an ε0-Cauchy sequence in D. Since the
limit of the subsequential limits is also a subsequential limit, we have
SSL({xp}) = S. But S = S since S is closed. Thus SSL({xp}) = S.
Finally, by the assumption, we have

D ∩ { ∩
α∈SSL({xp})

B(α, ε0)} = D ∩ { ∩
α∈S

B(α, ε0)} = ∅

Consequently, D is not ε0-complete.

Proposition 2.14. (Criterion) Let V,W be two normed linear spaces
such that both V and W satisfy the Heine-Borel property. Let f : D →
W be a multi-valued function defined on a bounded subset D of V . Then
f is ε0-uniformly continuous on D if and only if {f(xp)} is an ε0-Cauchy
sequence in W for every 0-Cauchy sequence {xp} on D.

Proof. (⇒) Suppose that f is ε0-uniformly continuous on D and any
0-Cauchy sequence {xn} on D be given. Then we have

∀ε > ε0,∃δ > 0 s.t. (∀x, y ∈ D)‖x− y‖ < δ,∀f(x),∀f(y)

⇒ ‖f(x)− f(y)‖ < ε.
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Since {xn} is a 0-Cauchy sequence, we have

∃K ∈ N, s.t.(∀p, q ∈ N)p, q ≥ K, ∀xp,∀xq ⇒ ‖xp − xq‖ < δ.

Thus we have

∀ε > ε0,∃K ∈ N s.t. (∀p, q ∈ N)p, q ≥ K, ∀f(xp),∀f(xq)

⇒ ‖f(xp)− f(xq)‖ < ε.

Therefore, {f(xp)} is an ε0-Cauchy sequence in W . (⇐) Suppose that f
is not ε0-uniformly continuous on D. Then we have

∃ε1 > ε0 s.t. {∀δ > 0,∃xδ, yδ ∈ D, ∃f(xδ), f(yδ) ∈ W
s.t. ‖xδ − yδ‖ < δ, ‖f(xδ)− f(yδ)‖ ≥ ε1} .

Choosing δ = 1
p

for each natural number p ∈ N , we have

∃{xp}, {yp} ⊆ D ∧ ∃{f(xp)}, {f(yp)} ⊆ W

s.t. ‖xp − yp‖ <
1

p
∧ ‖f(xp)− f(yp)‖ ≥ ε1.

Since {xp} and {yp} are bounded sequences in a bounded subset D and
the closure D is compact, we may assume that lim

p→∞
xp = lim

p→∞
yp = α

for some α ∈ D by choosing single-valued and convergent subsequences.
Let’s define a sequence {zp} by z2p−1 = xp and z2p = yp for each natural
number p ∈ N . Then lim

p→∞
zp = α and {zp} is a 0-Cauchy sequence in D.

But we have

‖f(z2p−1)− f(z2p)‖ = ‖f(xp)− f(yp)‖ ≥ ε1

for all p ∈ N . Hence {f(zp)} is not an ε0-Cauchy sequence. This is a
contradiction which completes the proof.

Theorem 2.15. Let V,W be two normed linear spaces such that both
V and W satisfy the Heine-Borel property. And let f : D → W be a
multi-valued function defined on a 0- complete subset D of V . If f is
ε0-uniformly continuous on D then, for every 0-Cauchy sequence {xp}
on D, there is an element α ∈ D such that {f(xp)} ε0-converges to
f(α) ∈ f(D).

Proof. Let any 0-Cauchy sequence {xp} on D be given. Since f(x) is
ε0-uniformly continuous on D, we have

∀ε > ε0,∃δ > 0 s.t. (∀x, y ∈ D)‖x− y‖ < δ,∀f(x),∀f(y)

⇒ ‖f(x)− f(y)‖ < ε.
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But we have 0− lim
p−→∞

xp = {α} for some α ∈ D since D is 0-complete.

Hence we have

∃K ∈ N s.t. ∀p ≥ K, ∀xp ⇒ ‖xp − α‖ < δ.

Hence we have

∀ε > ε0,∃K ∈ N s.t. ∀p ≥ K, ∀f(xp), ∀f(α)

⇒ ‖f(xp)− f(α)‖ < ε.

Thus we have f(α) ∈ 0− lim
p−→∞

f(xp) for all values of f(α). Since f(α) ∈

f(D) for all values of f(α), the sequence {f(xp)} is an ε0-convergent
sequence of f(D).

Now we introduce a concept of the generalized Banach spaces.

Definition 2.16. Let ε0 ≥ 0 be a non-negative real number. A linear
space V on a field F is called the ε0-Banach space if and only if V is an
ε0-complete normed linear space.

Proposition 2.17. Let V be a real normed linear space which satis-
fies the Heine-Borel property. Then V is the ε0-Banach space for all real
number ε0 ≥ 0.

Proof. Let any ε0-Cauchy sequence {xn} in V be given. Then we have

∀ε > ε0,∃K ∈ N such that ∀m,n ≥ K, ∀xm, xn ⇒ ‖xm − xn‖ < ε.

Since {xn} is ultimately bounded, the set SSL of all the subsequential
limits of {xn} is not empty and compact. Hence, by lemma 2.3,

∅ 6= SSL ⊆ ε0 − lim
n−→∞

xn.

Hence V is ε0-complete which completes the proof.

Theorem 2.18. Let V be a real normed linear space which satisfies
the Heine-Borel property. Then any linear subspace W of V is the ε0-
Banach space for all real number ε0 > 0.

Proof. Any linear subspaceW is a convex subset of V . By the theorem
2.10, W is ε0-complete. Hence W is also an ε0-Banach space for all real
number ε0 > 0.
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