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e-FUZZY FILTERS OF MS-ALGEBRAS

BERHANU ASSAYE ALABA AND TEFERI GETACHEW ALEMAYEHU*

ABSTRACT. In this article, we present the notion of e-fuzzy filters in
an MS-Algebra and characterize in terms of equivalent conditions.
The concept of D-fuzzy filters is studied and the set of equivalent
conditions under which every e-fuzzy filter is an D-fuzzy filter are
observed. Moreover we study some properties of the space of all
prime e-fuzzy filters of an MS-algebra.

1. Introduction

MS-algebras introduced by Blyth and Varlet 2] as common abstrac-
tion of de Morgan algebras and MS-algebras. And also they [3] char-
acterized the subvarieties of MS-algebras. Recently Roa [8] introduced
e-filters of MS-algebras.

On the other hand, fuzzy set theory was introduced by Zadeh [11]. Next,
fuzzy groups were studied by Rosenfield [7]. Many scholars have used
this idea to different mathematical branches such as semi-group, ring,
semi-ring, near-ring, lattice etc. For instance Yuan and Wu [10] intro-
duced the notion of fuzzy sublattice and fuzzy ideals of lattice, Swamy
and Raju [9] fuzzy ideals and congruences of lattices, Kumar [6], topol-
ogized the set of all fuzzy prime ideals of a commutative ring with unity
and studied some properties of the space, Kumar [6], studied about the
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space of prime fuzzy ideals of a ring in different way and Hadji-Abadi
and Zahedi [4] extended the result of Kumar. In this article our aim is
to present e-fuzzy filters of an MS-algebra and that every e-fuzzy filter
of an MS-algebra is an D-fuzzy filter. Finally we discuss the concept of
topological space on the set all prime e-fuzzy filters.

2. Preliminaries

In this section, we recall basic definitions and results which will be
used in this article. For in details in ordinary crisp theory of e-filters of
MS-algebras, we refer to [8].

DEFINITION 2.1. [2] An MS-algebra is an algebra (L, V,A,°,0,1) of
type (2,2,1,0,0) such that (L, V, A, 0,1) is a bounded distributive lattice
and a — a° is a unary operation satisfying the conditions a < a°°,
(anb)°=a°V° and 1° =0 for all a,b € L
A de Morgan algebra is an MS-algebra satisfying a°° = a for all a € L.

LEMMA 2.2. [2] Let L be any MS-algebra and a,b € L. Then

(1) 0° =1
(2) a<b=1°<a°
(3) aooo:ao

(4) (aVb)° =a°Ab°
(5) (aVb)°° =a"Vb>°
(6) (a AD)°° = a®® AD>°

DEFINITION 2.3. [8] For any filter F' of an MS-algebra L, define F*
as the set F* = {z € L/x° < a° for some a € F'}

DEFINITION 2.4. [8] A filter F' of an MS-algebra L is called an e-filter
of Lif FF = F*°

An element a of an MS-algebra L is called a dense element if a° = 0.
The set of all dense elements in MS-algebra L is denoted by D.

DEFINITION 2.5. [8] A filter F' of an MS-algebra L is called a D-filter
of Lit D C F.

Remember that, for any set S a function p : S — ([0, 1], A,
is called a fuzzy subset of S, where [0,1] is a unit interval, a A
min{a, 8} and a V 8 = maz{a, B} for all o, 8 € [0,1].

V)
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Let p: S — [0,1]. For every a € [0,1], the level subset p of S is
po ={r € L:a<pu(x)}.

DEFINITION 2.6. Let x € S, 0 < o < 1. A fuzzy point x, of S is a
fuzzy subset of S defined as

ma(z):{a if z=x

0 otherwise

We define the binary operations ” +” and ”.” on all fuzzy subsets of
a lattice L as: (u+ 0)(z) = sup{u(a) AO(b) : a,b € L,aV b= x} and
(1.0) () = sup{p(a) NO(b) : a,b € Lya Nb=x}.

The intersection of fuzzy filters of L is a fuzzy filter. However the
union of fuzzy filters may not be fuzzy filter. The least upper bound of a
fuzzy filters p and 6 of L is denoted as uvV8 = N{o € FF(L) : uUh C o}.

If 4 and 0 are fuzzy filters of L, then .60 = VvV and p+6 =pno

Let p be a fuzzy subset of a lattice L. The smallest fuzzy filter of L
containing u is called a fuzzy filter of L induced by p and denoted by
() and [p) = N{0 : 0 is a fuzzy filter of L, u C 0}

DEFINITION 2.7. [9] A fuzzy subset p of a bounded lattice L is said
to be a fuzzy ideal of L, if for all =,y € L,

1. pu(0) =1,
2. w(zVy) > p(x) A ply)
3. wlx ANy) > u(x) VvV uly) forall z,y € L.

In [9], Swamy and Raju observed that, a fuzzy subset p of a a
bounded lattice L is a fuzzy ideal of L if and only if x(0) = 1 and

p(xVy) = p(x) Aply) forall z,y € L.

DEFINITION 2.8. [9] A fuzzy subset u of a bounded lattice L is said
to be a fuzzy filter of L, if for all z,y € L,

Lop(1) =1,
2. p(xVy) > p(x) A p(y)
3. wlx ANy) > p(x) Vv uly) forall z,y € L.
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In [9] a fuzzy subset u of a a bounded lattice L is a fuzzy filter of L
if and only if u(1) =1 and p(z Vy) = pu(z) A p(y) for all x,y € L.

THEOREM 2.9. [9] Let u be a fuzzy subset of L. Then p is a fuzzy
ideal of L if and only if, for any « € [0,1], u, is an ideal of L.

DEFINITION 2.10. [9] A proper fuzzy ideal p of L is called prime fuzzy
ideal of L if for any two fuzzy ideals \,v of L, A\Nv C u = X C por
v C pu.

p is a prime fuzzy ideal of L if and only if Imu = {1,5} , 6 € [0,1)
and p, = {z € L : p(x) = 1} is a prime ideal of L.

Throughout in the next sections L stands for an MS-algebra unless
otherwise mentioned.

3. e-Fuzzy Filters of MS-algebras

In this section, the concept of e- fuzzy filters is introduced and some
basic properties of e-fuzzy filter are observed. The concept of D-fuzzy
filter is introduced and we obtain a set of equivalent conditions for any
e-fuzzy filter to become an D-fuzzy filter. We prove that the class of
e-fuzzy filters FF°(L) is a complete distributive lattice with relation C.

DEFINITION 3.1. Let p be any fuzzy filter of an MS-algebra L, an
extension of p define as the fuzzy subset p®(z) = sup{u(a) : z° <
a°, a € L} for all x € L.

The following Lemma reveals some basic properties of u¢

LEMMA 3.2. Let p and v be any two fuzzy filters of an MS-algebra
L. Then

(1) p¢ is a fuzzy filter of L
(2) p C ps,

(3) pCv=ps Cre,

(4) (pNv)e=psnve,

(5) (n°)° = pe.

Proof. For elements z,y,a,b € L,
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. (1) po(1) = sup{p(a) : 1° <a°, a € L} > p(1) = 1. Hence uf(1) = 1.
ext,
pe(@) Apc(y) = sup{ula) : 2° < a®} A sup{u(b) - y° < b°}
= sup{p(a) A p(b) 1 2° < a®, y° <%}
sup{p(a AD) : (x ANy)° < (aAb)°}
p (@ Ay)

IN

and

pé(z) v p(y) = sup{ula) 2 <a} Vv sup{u(b) 1 y° < b°}
= sup{u(a) vV u(b) 1 2° < a®, y° <%}
< sup{u(aVb): (zVy)® < (aVb)°}

p(z Vy)

Thus p° is a fuzzy filter of L.
(2) p(x) = sup{p(a) - 2° < a°} > p(x). Hence p C pc.
(3) Suppose that x4 C v, then
veé(x) = sup{r(a) : z° < a°} > sup{p(a) : 2° < a°} = pf(x).
Hence p¢ C v°
(4) By (3) (N v)° C e 1o,

Conversely,
() (z) = poz) Avi(z)
= sup{u(a): z° < a’} A sup{v(b) : z° < b°}
< sup{p(a®) : 2°° < a®®} A sup{p(b”) : 2°°° < b°°)
= sup{(a®) A p(E%°) : 2°° < a°° A B}
< sup{u(a® Vb)Y A p(a® V B) s 2% < a®° A 1)
< sup{(p )@ V) s 2° < (0 V)
= (kNv)(z)
Hence (u®Nve¢) = (pNv)e.
()

(1)(x) = sup{p(a):2° < a’ac€ L}
= sup{sup{p(z) :a° <2°, z€ L} :2° <a’,a,x € L}
= sup{p(z) :2°<2° z€L}
= pu(x)
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Hence (u€)¢ = ue. O

Now we define e-fuzzy filter in an MS-algebra.

DEFINITION 3.3. A fuzzy filter p of an MS-algebra L is called an
e-fuzzy filter of L if u = p°.

THEOREM 3.4. p is an e-fuzzy filter of an MS-algebra L if and only
if, Va € [0,1], uq is an e-filter of L.

THEOREM 3.5. F is an e-filter of an MS-algebra L if and only if xp
is an e-fuzzy filter of L.

LEMMA 3.6. Let D be the set of all dense elements of L. Then xp is
an e-fuzzy filter.

In the Lemma 3.2(4), we can mention that the intersection of two
e-fuzzy filters of an MS-algebra is an e-fuzzy filter. But the union of two
e-fuzzy filters may not be the e-fuzzy filter.

ExaMPLE 3.7. Let L be the following MS-algebra described in the
diagram 1.

diagram 1

Consider p and v a fuzzy set of L defined as u(a) = p(0) = 0.5, u(b) =
pu(l) =1 and v(0) = v(b) = 0.7, v(a) = 0.8 and v(1) = 1. It can be
easily verified that p and v are e-fuzzy filters of L. But p U v is not an
e-fuzzy filter of L. Since p U v is not an fuzzy filter of L i.e

(pUv)(aAb)=mazx{u(aANb),v(aNb)} = max{u(0),r(0)}
= maxz{0.5,0.7} = 0.7

and
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(nUv)(a) A(pUv)(b) = max{pa),v(a)} Amax{pb),v(b)}
= maz{0.5,0.8} Amaz{1,0.7} =0.8A1=0.8

Thus (LU o) (aAb) =0.7#08=(pUoc)(a) A (nUo)(b)

COROLLARY 3.8. Let {u; : i € Q} be a family of e-fuzzy filters of an
MS-algebra L. Then N;cqp; is an e-fuzzy filter of L.

In the following, we characterize the e-fuzzy filters

THEOREM 3.9. Let u be a fuzzy filter of an MS-algebra L. Then, the
following are equivalent.
(1) p is an e-fuzzy filter,
(2) p(x) = (),
(3) For z,y € L , x° = y° implies u(x) = p(y).
Proof. (1) = (2). Suppose that u is an e-fuzzy filter of L. For

000

v € L p(x) = p(a) = suplp(o) : 2° < @} = suplu(a) : 2°°° =
7° < ao} _ ,ue(xoo> _ M($OO>-

(2) = (3). Suppose that condition (2) holds. Let z,y € L,z° = y°.
T(he)n x®® =y Thus p(z) = p(x*?) = p(y>) = p(y). Hence p(z) =
pu(y).

(3) = (1). Suppose that condition (3) holds. u¢(z) = sup{pu(a) : x° <
a°} = sup{p(anz) : x° < a°} < p(z). Since by (3) a® = z°Va® = (a/\av)O
and pu(x A a) < p(z). This implies pu® C p. Clearly p C pf. Hence p is
an e-filter of L. O

THEOREM 3.10. For any fuzzy filter u of an MS-algebra L, a fuzzy
subset p°(x) = sup{u(b) : x°Ab=0,b€ L}V x € L is an e-fuzzy filter.

Proof. For any x,y € L,
(1) = sup{u(d) : 1°Ab=0,be L} > p(l) =1

and
p(@Ay) = sup{u®d): (xAy)°Ab=0,be L}
= sup{u(b) : (z°Vy’)Ab=0,be L}
= sup{p(b) A p(b) : (2" AD)V (y° Ab) =0, be L}
= sup{u(b) :2° ANb=0, be L} ANsup{u():y>ANb=0, be L}
i

= u(z) A p’(y)
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This implies p° is a fuzzy filter of L. Next we prove that p is an e-fuzzy
filter. Now

p(x°°) = sup{u(c) : 2°°°Ac =0, c € L} = sup{u(c) : z2°Ac =0, c € L} = p°(z).
Therefor p° is an e-fuzzy filter of L. O

DEFINITION 3.11. A fuzzy filter p of an MS-algebra L is called a
D-tuzzy filter of L if xp C .

THEOREM 3.12. A fuzzy filter p of an MS-algebra L is a D-fuzzy
filter of L if and only if, ¥ o € [0,1] , uo is a D-filter.

Proof. Suppose that j is a D-fuzzy filter of L, then xp(z) < p(x) ¥V x €
L. Let x € D. Then xp(z) =1 < p(x). This implies p(x) = 1. This
implies x € p; C py Vo € [0, 1], and so D C p,. Hence p, is a D-filter.
Conversely, suppose that p, is a D-filter of L, V a € [0,1]. If x ¢ D,
then xp(z) = 0 < p(x). If z € D, then x € D C pu,,V a € [0,1].
This implies x € D C py, for a« = 1. Thus p(xz) > 1. This implies
xp(z) =1 < p(z). Therefore for all x € L, xp(z) < u(x). Hence the
result. O]

THEOREM 3.13. F' is a D-filter of L if and only if xr is a D-fuzzy
filter of L.

THEOREM 3.14. Any e-fuzzy filter of an MS-algebra L is D-fuzzy
filter.

Proof. Let p be any e-fuzzy filter of L. For any x € L. If xp(z) =0,
then xp(z) < p(z). If xp(z) =1, then z € D. Thus u(z) = sup{u(a) :
2° < a®, a € L} =sup{u(a) : 2°° < a°, a € L} = p(z°°) = p(z°°) =
p(1) = 1. This implies xp C u® = p. Hence p is a D-fuzzy filter. O

COROLLARY 3.15. xp is the smallest e-fuzzy filter of an MS-algebra.
We denote the class of all e-fuzzy filters of an MS-algebra L by FF¢(L)

THEOREM 3.16. The class FF¢(L) is a complete distributive lattice
with relation C.

Proof. Since xp, x1 € FF(L), FF(L) # 0. Clearly (FF¢(L),C) is
a partially order set. Now for any u, o0 € FF¢(L), define uAo = uNo and
plo = (uVo)¢, where (uVo)é(z) = sup{p(a)Ap(d) : 2° < (aAb)°, a,b €
L}V x € L. Tt can be easily verified that uNo, (uV o) € FF(L) and
(N o is the greatest lower bound of p and 0. We need to show p U o is
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the least upper bound of p and ¢. Since u,0 C uVo C (uVo)s, (uVo)©
is an upper bound of 4 and o. Let S be any e-fuzzy filter of L such that
1w C Band o C L.

(v o) (x) = Suplu(a) Ap(h): (@) < (aAb) sa,be L}
< Sup{p(a) NB(b) : (z)° < (aAD)° a,be L}
= Sup{B(anb):(z)°<(aNb)° a,be L}

p(x) = B(x)
Hence (u V 0)¢ = sup{p,c}. Thus (FF¢(L),C) is a lattice. Since
x¢p} and xr, are the smallest and the greatest e-fuzzy filters of FF¢(L),
(FFe(L),N,U, x{p}, xr) is a bounded lattice. By Corollary 3.8 any
subfamily of e-fuzzy filters of FF¢(L) has infimum in FF¢(L) and
FFe(L) has greatest element. Hence (FF¢(L),N, U, x{p}, Xr) is a com-
plete bounded lattice. For any u, o, and § € FF¢(L), we obtain (ulLlo)N
(pf) = (uVo) N(pve)® = (uvo)N(pve))® = (uV(end))® = pl(ene).
Therefore (FF¢(L),N, U, x{p}, Xr) is a bounded and complete distribu-
tive lattice. O

4. Prime e-Fuzzy Filters and Maximal e-fuzzy Filters of MS-
algebras

In this section, we introduce prime e-fuzzy filters and maximal e-fuzzy
filters of MS-algebras and we discuss some properties of them.

DEFINITION 4.1. A proper e-fuzzy filter p in MS-algebra L is called a
prime e-fuzzy filter if for any fuzzy filters A and v of L, \Nv C = A C p
or v C pu.

THEOREM 4.2. A proper filter F' is a prime e-filter of L and o € [0, 1)
if and only if the fuzzy subset given by

1 ' F
Flm)={t e
a if x¢F
is a prime e-fuzzy filter of L.
Proof. Suppose that a proper filter I’ of L is a prime e-filter of L and
a € [0,1). Clearly F! is a proper fuzzy filter of L. Since (Fl); = F

and (F!), = L are e-filters of L. This implies by Theorem 3.4, F! is a
proper e-fuzzy filter of L. Now we prove that F! is a prime e-fuzzy filter.
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Let v and 6 be any fuzzy filters of L such that v N 6§ C F!. Suppose if
possible that v € F! and §# € F. Then there exist ,y € L such that
v(z) > Fl(x) and 6(y) > Fl(y). This indicates F!(z) = F}(y) = o and
sox ¢ Fandy¢ F. Since F is prime, Vy ¢ F and so F(z Vy) = a.
Now, (vN&)(zVy) =vzVy ANO(xVy) >v@)AN0(y) >ahNa=a=
Fl(zVy), which is a contradiction to our assumption ¥N6 C F. Hence
Fl is a prime e-fuzzy filter. Conversely, suppose that F! is a prime e-
fuzzy filter. Clearly F! is an e-fuzzy filter and (F!); = F. Hence F is an
e-filter of L. Let A and B be any filters of L such that ANB C F. Then
(AnB), = AL n B! C F!. Since F! is prime, A}, C F! or A}, C FL.
This implies B C F or A C F'. Hence F' is a prime e-filter of L. n

EXAMPLE 4.3. Let us consider an MS-algebra L described in the
diagram 2

1
’
. e
d '::II | I
- 4]
* 0
*

Ola|blc|d|e]l
°ll1lelelc|d|b]|O

diagram 2

In diagram 2, A = {1}, B = {l,e}, C = {l,e,c}, D = {l,e,d}, E =
{1,e,d,c,b}, F = {1,e,d,c,b,a} are filters of L and all except B are
prime filters of L and also A, C' and F' are prime e-filters of L.

In addition to this, it can be easily verified that Al ,C!

L.CY and F! are
prime e-fuzzy filters of L.

COROLLARY 4.4. A proper e-filter F' of L is a prime if and only if x g
is a prime e-fuzzy filter of L.
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THEOREM 4.5. A proper e-fuzzy filter ji of L is a prime e-fuzzy filter
if and only if Img(pn) = {1, a}, where a € [0,1) and the set p, = {x €
L : p(z) =1} is a prime e-filter of L.

Proof. The converse part of this theorem follows from Lemma 4.2.
Suppose that u is a prime e-fuzzy filter. Clearly 1 € Im(u) and since p
is proper, there is z € L such that u(z) < 1. We prove that pu(z) = u(y)
for all z,y € L — p,. Suppose that u(x) # p(y) for some x,y € L — p,.
Without loss of generality we can assume that p(y) < p(z) < 1. Define
fuzzy subsets # and A\ as follows:

0(z) = {1 if z €lx)

0 otherwise.

and

A(z):{l if 2 € iy

u(x)  otherwise.

for all z € L. Then it can be easily verified that both 8 and A are fuzzy
filters of L. Let z € L. If z € p,, then (N A)(2) < 1 = p(z). If
2 € [x) — s, then z = VvV z, and we have (0 N A)(2) = 0(z) A X(z) =
LA () = (@) < p(z).

Also if z ¢ [x), then 6(z) = 0, so that (§ N \)(z) =0 < u(z). Therefore
for all x € L, (6 N A)(x ) p(z). But we hav ( ) =1 > u(x)
and \(y) = (ac) w(y). This implies A ¢ pand 6 ¢ X, which is
a contradiction. Thus u(x) = u(y) for all x,y € L — p,. and hence
Im(p) = {1,a} for some a € [0,1). Let P ={x € L: pu(x) = 1}. Since
i is proper, we get that P is a proper e-filter of L such that

(2) 1 ifzeP

Z) =

H a ifz¢ P

for a # 1. Hence by Lemma 4.2, P = p,. O

THEOREM 4.6. If u is a prime e-filter of L, then p(x Vy) = p(z) or
p(x Vy) = p(y) for all x,y € L.

Proof. Suppose that p is a prime e-filter of L, then there exists a
prime e-filter F' of L and « € [0,1) such that

_J1 ifxeF
pla) = a if x¢F
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forall z € L. If z,y € F,then a Vy € F and so 1 = u(x) = u(y) =
p(zVy). fr e Fandy ¢ F,then xVy € Fandso 1 = u(x) = pu(xVy).
lfx¢ Fandy ¢ F, then xVy ¢ F and so a = u(z) = pu(y) = pu(z Vy).
Hence the Theorem holds. ]

DEFINITION 4.7. A proper fuzzy filter g in MS-algebra L is called a
maximal fuzzy filter if Img(u) = {1,a}, where a € [0,1). and the set
[+ is a maximal filter of L.

DEFINITION 4.8. A proper e-fuzzy filter p in MS-algebra L is called
a maximal e-fuzzy filter if Img(u) = {1, a}, where a € [0,1). and the
set . is a maximal e-filter of L.

COROLLARY 4.9. Any maximal e-fuzzy filter of L is a prime e-fuzzy
filter.

Proof. Let pu be a maximal e-fuzzy filter of L. Then Imu = {1, a},
and pu, is a maximal e-filter of L. Since every maximal e-filter of L is a
prime e-filter of L. This implies p, is a prime e-filter of L. Hence p is
a prime e-filter of L. But the converse is not true, since in the Example
4.3, AL C! are prime e-fuzzy filters of L but not maximal e-fuzzy filters
of L. O]

THEOREM 4.10. Every maximal fuzzy filter of an MS-algebra is an
e-fuzzy filter.

COROLLARY 4.11. Every maximal fuzzy filter of an MS-algebra is
prime e-fuzzy filter.

THEOREM 4.12. If i1 is minimal in the class of all prime fuzzy filters
L containing a given e-fuzzy filter, then p is an e-fuzzy filter of L.

Proof. Suppose that p is minimal in the class of all prime fuzzy filters
containing an e-fuzzy filter 6 of L. We prove that p is an e-fuzzy filter.
Since u is a prime fuzzy filter of L, there exists a prime filter P of L

such
1 ifzeP
p(z) = :
«Q otherwise.

for some a € [0,1). Suppose that p is not an e-fuzzy filter of L, then
there exist x,y € L, 2° = y° such that u(x) # u(y). Without loss of
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generality, assume p(z) = 1 and p(y) = a. Consider a fuzzy ideal ¢ of
L defined by

gzﬁ(z):{l if ze (L—P)V(zVy]

«  otherwise.

Then 6 N ¢ < . Otherwise there exists a € L such that ¢(a) = 1 and
6(a) > . This implies a € (L — P) V (z V y].

= a=rVsforsome re€ L —Pand sée(zVy]
= a=rVs=rV(sA(zVy)=(rVs)A(rvaVy <rVzVy

As z° = y° implies (r Vx Vy)° = (r V y)°. Since 0 is an e-fuzzy filter of
Lya<6(a)=0(rvs)<6(rvaVy)=0(rVy) < u(rVy). This implies
L= p(rvy).

Hence u(y) = 1 or u(r) = 1, which is a contradiction. Thus N¢ < a.

This implies there exists a prime fuzzy filter n such that n N ¢ < a
and 0 C n. Clearly x Vy € (L — P)V (x Vy]. This implies ¢(x Vy) = 1.
Since ¢ Ny < o, n(zVy) < a < p(rVy) =1 This implies p € 7.
This indicates p is not minimal in the class of all prime fuzzy filters
containing a given e-fuzzy filter, which is a contradiction. Therefore, u
is an e-fuzzy filter. O

THEOREM 4.13. Let L be an Ms-algebra. Then the following condi-
tions are equivalent.
(1) L is a de Morgan algebra,
(2) For all z,y € L, x° = y° implies © = y,
(3) Every fuzzy filter is an e-fuzzy filter,
(4) Every prime fuzzy filter is an e-fuzzy filter.

Proof. The proof of (1) = (2), (2) = (3), and (3) = (4) are straight-
forward. Now prove that (4) = (1). Suppose that x # 2°° for € L.
Thls implies < 2°°. We have (z] N [2°°) = 0. We know that x(y
and x[zeo) are fuzzy ideal and fuzzy filter of L respectively such that
X(z] N X[zee) = Xp (the constant fuzzy subset attaining, value 0), there
exists a prime fuzzy filter 6 of L such that x[co) € 6 and x( N O = xp.
Since xzeoy € 6, we get 0(x) = 1. Also x(z) A (x) = 0. This implies
0(x) = 0, which is a contradiction 6 is an e-filter. Hence x = 2°° and so
L is a de Morgan algebra. O]
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THEOREM 4.14. Let p be a prime fuzzy filter of an MS-algebra L, and
11(0) = 0. Then a fuzzy subset (1) of L defined as () (z) = p' (2°) Vo €
L is an e-fuzzy filter of L.

Proof. (u)(1) = ' (1°) = 1 — p(1°) =1 — p(0) = 1.

()@ Ay) =p((xny)°) = 1—p(a°Vy)
= (T=p(@) A1 = p(y°))
= p (@) Ap(y°) = p)(x) A(p)(y)
This implies £(p) is a fuzzy filter of L. Next we prove that ¢(u) is an
e-fuzzy filter. Since x < z°°, x°° =z V 2°°,

!/ !

Up) (%) = L) (@va™) = p ((@Va®™)?) = p (2°Ae™7) = p(2°) = ((p)(2).
This implies ¢(u) is an e-fuzzy filter of L by Theorem 3.9 O

COROLLARY 4.15. Let i be a maximal fuzzy filter of an MS-algebra
L and 1(0) = 0. Then {(u) is an e-fuzzy filter of L.

5. The space of prime e-fuzzy filters

In this section, we discuss some properties of prime e-fuzzy filters of
an MS-algebra and topological properties of the collection of all prime
e-fuzzy filters of an MS-algebra.

THEOREM 5.1. Let a € [0, 1), pu be an e-fuzzy filter and o be a fuzzy
ideal of an MS-algebra L such that pNo < «. Then there exists a prime
e-fuzzy filter B such that 4 C 8 and fNo < a.

Proof. Put £ ={0 € FF¢(L) : u C 0 and 6No < a}. Clearly (£, C) is
aposet. Let Q = {y; : i € Q} be a chain in £&. We prove that U;equ; € €.
Clearly (Ujequi)(1) = 1. For any =,y € L,

(Uieai)(z) A (Uieapi)(y) = sup{ui(x) :i € Q} Asup{p;(y) : j € Q}

= sup{ui(z) A py(y) 4,5 € Q}
< sup{(ps U pg) (@) A (s U ) (y) 24, j € Q3
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Since @ is a chain, p; € p; or p; € p;. Without loss of generality,
assume ft; C p;. This implies p; U p; = p;. This shows,

(Uicapi) (@) A (Uieaui)(y) < sup{ui(z) A pily), @ € Q}
= sup{ui(z Ny), i € Q}
= (Uicami)(xz AN y)

Again (Ujequ;)(z) = sup{ui(z) : i € QF < sup{pi(z Vy) :i € Q} =
(Uicapu)(z V' ). Similarly (Uicapi)(y) < (Uieapu)(z V ). This implies
(Useatts)(x) V (Uieatti)(y) < (Uiequi)(z V y). Hence Ujeqpu; is a fuzzy
filter of L. Now prove that (U;cqu;) is e-fuzzy filter.

(Uieopi)“(z) = sup{(Uieqi)(a) : 2° < a®, a € L}
= sup{sup{ui(a):ie€Q}:2°<a®, ac L}
= sup{sup{p;(a) : 2° <a°, a€ L}:i€Q}
= sup{y;(z),i € Q} = sup{pi(x),1 € Q}
— (Uicam) (@)

Thus U;eqpu; is an e-fuzzy filter of L. Since pu; No < « for each i € €,

(Vieawi) No)(z) = (Yieam:)(z) A o(x)
= sup{ui(z), i € Q} ANo(x)
= sup{ui(z) No(z), i € Q}
= sup{(mNo)(z), 1€ Q} <a

Thus (Ujequ;) N0) < a. Hence Ujequ; € €. By applying Zorn’s Lemma,
¢ has a maximal element, say 0, i.e, § is an e-fuzzy filter of L such that
1 Coand dNo < a. Next we show that § is a prime e-fuzzy filter of L.
Assume that ¢ is not a prime e-fuzzy filter. Let Ay, Ay € FF(L), and
A1 N A2 C & such thatAy € § and Ay € 6. If we put & = (A V §)¢ and
dy = (A2 )€, then both 01, 05 are e-fuzzy filters of L properly containing
d. Since § is a maximal in &, we have 01,02 ¢ & Thus we show that
ONo ﬁ aand o No ﬁ «. This implies there exist z,y € L such that
(01 No)(z) > aand (62 No)(y) > a.
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Now we have,

a < (0ino)(x)A(dNo)(y)

d1(z) A da(y) ANo(x) Aa(y)
d(xVy) Aoz Vy)ANo(zVy)
hNno)zVy A(dNo)(zVy)
((1No)n(d2no))(zVy)
((0aNdg)No)(xVy)
(
(

IN

(A1 V)N ()\2 \/5) yNo)(xzVy)
no)(zVy)
o)(xVy).

(
(
(
(
(
(6°
N

Which is a contradiction 0 N o < «. This implies § is a prime e-fuzzy
filter of L. O]

COROLLARY 5.2. Let p be an e-fuzzy filter and o be a fuzzy ideal of

an MS-algebra L such that pNo = 0. Then there exists a prime e-fuzzy
filter B such that 4 C 8 and fNo = 0.

COROLLARY 5.3. Let o € [0,1), p be an e-fuzzy filter of an MS-
algebra L and pu(x) < «. Then there exists a prime e-fuzzy filter 6 of L
such that n C 0 and 0(z) < «

Proof. Put £ = {0 € FF(L) : p C 0 and 6(z) < a}. Clearly (¢,CQ) is
aposet. Let Q = {yu; : i € Q} be a chain in £&. We prove that U;equ; € &.
By Theorem 5.1, (Ujequ;) is an e-fuzzy filter of L. Since p; C 6 for each
i€ Qand 0(x) < a, (Uieaus)(z) = sup{pi(x), i € Q} <0(z) <«
Hence U;equ; € €. By applying Zorn’s Lemma, ¢ has a maximal element,
say 0, i.e, ¢ is an e-fuzzy filter of L such that p C ¢ and d(z) < a. Next
we show that ¢ is a prime e-fuzzy filter of L. Assume that ¢ is not a
prime e-fuzzy filter. Let A\;, Ao € FF(L), and A\; N A2 € 6 such that
A € 6 and Ay € 4. If we put 6; = (A1 V) and 03 = (A2 V4)¢, then both
01, 09 are e-fuzzy filters of L properly containing d. Since § is a maximal
in &, we get 01,02 ¢ £. This implies §;(x) > a and dy(x) > a. We have
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01(z) A do(x) > (61 N o) (x) > . Which implies
a < 6i(x) A do(x)
(A1 V)NV (r)
= (AN X) VI (x)
d¢(z), becouse \; C 0 and Ay C 9§
= §(x).

Which is a contradiction 6(x) < «. Thus 0 is a prime e-fuzzy filter of
L. O

COROLLARY 5.4. For any e-fuzzy filter u of an MS-algebra L, we have
pw=N{o : o is a prime e-fuzzy filter of L, u C o}.

Proof. Let pu be any e-fuzzy filter of L. Put n = N{f : 0 is a prime
e-fuzzy filter such that © C 6}. Now, we prove that u = 7. Clearly
i € n. Suppose that n(a) > p(a) for some a € L. Put a = p(a). This
implies ¢ C p and p(a) < a. Thus by the Corollary 5.3, there exists
a prime e-fuzzy filter § such that p C ¢ and §(a) < «a. Since n C 6,
n(a) < a. Which is a contradiction for n(a) > «. Hence n C u. Hence
1 = n. This implies every proper e-fuzzy filter of L is the intersection of
all prime e-fuzzy filters containing it. O]

COROLLARY 5.5. Let L be an MS-algebra. Then the intersection of
all prime e-fuzzy filters of L is equal to xp.

Let L be an MS-algebra and X¢ denotes the set of all prime e-fuzzy
filters of L. For a fuzzy subset 0 of L, define H¢(0) = {u € X°¢: 0 C u},
and X¢(0) = {p e X°: 0 L u}.

LEMMA 5.6. For any fuzzy filters A\ and v of L, we have

I.ACv= X\ C Xv),

2. X¢(AVr)=X¢\)UX(v),

3. Xe(ANv) =X\ NXe(v)

Proof. (1) Let p € X¢(\). Then A € pandsov € p. Thus p € X¢(v).
Hence X¢(\) C X¢(v).

(2) By (1) X¢(\) € X¢(AVv)and X¢(v) C X¢(AV ). We have
Xe(v)UXe(A) C X°(AVr). Conversely, If p € X¢(AVv), then A\Vv € p.
Since 4 is a prime e-fuzzy filter, A € por v € p, and so u € X¢(\) or
p € X¢(v). Hence p € X¢(A\)UX®(v). Thus X¢(AVr) = X(AN)UX(v).



1176 Berhanu Assaye Alaba and Teferi Getachew Alemayehu

(3) Clearly X¢(ANv) C X¢(\) N X°v). Again p € X°(\) N X(v),
then A\ € pand v € p. Since p is a prime e-fuzzy filter, we have
ANp € p. Thus g€ X¢(ANv) and so X¢(\) N X¢(v) C X¢(ANv).
Hence X¢(A\) N X¢(v) = X(ANv). O

LEMMA 5.7. Let A\ be a fuzzy subset of L. Then X¢(\) = X¢([))).

Proof. Since A C [\), X¢(\) C X¢([\)). Let p € X¢([\)), Then
[(A) € p. This implies A € p. Otherwise, if A C g, then [A) C . Which
is impossible. So that p € X¢(\) and so X¢(\) = X¢([\)). O

LEMMA 5.8. Let x,y € L, and a € (0,1]. Then

(l) UJ:EL, aE(O,l]Xe(xa) = Xea

(2) X(za) N X(ya) = X((2 V y)a),
(3) X(xa) UX(ya) = X((x Ay)a),
(4) X(zo) =0 <z € D,

Proof. (1) Clearly Uger, ac011X(za) € X Let p € X Then
Imp ={1,r}, r € ]0,1). This implies there is x € L such that u(x) = r.
Let us take some « € (0, 1] such that o > r. This implies u € X°(z,),
and so f1 € Uzer, ac0,1)X(2a). Thus X¢ C Uger, ac(01]X (o). Hence
X¢ = Uzer, ac0, X “(7a).

(2) Let,
1€ X(xa) N X(Ya) 1€ X(xa) and pp € X(ya)
To € pand yo € p
a > p(z) and a > p(y)
a>p(z)Vuly) = paVy)
(@ VYo L p
peX((xVya
X(wa) N X (ya) € X(((z Vy)a))

A I
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Conversely, let

€ X((xVy)a) (@Vy)a & p
a>plxVy) = px) Vv uly) as pis prime
a > p(x) and a > pu(y)
To € poand yo € p
€ X(xy) and p € X(yo)
e X(xa) N X (ya)
X(( Vya) € X(za) N X (ya)
Hence X¢(z,) N X(ya) = X((z V Y)a).
(3) The prove is similar to (2).
(4)

A

X(zq)=0 & z2,CuVvVyueXe
< To © Nuexelt = XD
< xplr) =1
& reD.

]

LEMMA 5.9. Let ay, a3 € (0,1], « = min{ay,as} and any x,y € L.
Then X¢(2a,) N X(Yay) = X((2 V Y)a)-

Proof. Let 1 € X(24,) N X%(Ya,). Then zo, € p and y,, ¢ p. This
implies oy > p(x) and as > p(y). Since u, is a prime filter of L and
z,y & s, we have x Vy ¢ u, and p(z) = p(y) = p(x Vy). This shows
a=aj; Aag > p(zVy), Whence (2 Vy)s € pand so p € X((2Vy)a).
Thus X(24,)NX(Ya,) C X((zVY)a). Conversely, let u € X((2VY)a)-
Then (zVy)q € p. This implies a > p(z Vy) = p(x) V p(y). This show
a1 > p(x) and as > p(y) and 24, € p and yo, € . Then we have
€ X(xay) N X(Yap)- Hence X¢(24,) N X(Yoo) = X((x VYy)o). O

LEMMA 5.10. The collection T = {X*(0) : 0 is a fuzzy filter of L} is
a topology on X°.

Proof. Consider the fuzzy subsets Aj, Ay of L defined as : A\j(xz) =0
and Ag(z) = 1 for all x € L. Clearly [\) and Ay are fuzzy filters of
L. [A\) C pfor all p € X¢ Thus X¢([\;)) = 0. Since each p € X°¢
is non-constant, Ay ¢ p for all 4 € X¢ Thus X¢(\) = X°¢ This
implies ), X¢ € T. Also for any fuzzy filters \; and A\, of L, by Lemma
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5.6(3) we have X¢(A1) N X¢(A2) = XA N Ay) . This show that T is
closed under finite intersections. Next, let {\;;i € Q} be any family
of fuzzy filters of L. Now we prove that U;coX¢(\;) = X¢([Uica)i)).
Let u € X%([UieaNi)), then [UiegNi) € u, which implies that \; ¢
p for some ¢ € Q. Otherwise if \; C u for each ¢ € €, it will be
true that [UjeqX;) € p. Thus p € UjeaX(\;) Whence X¢([U;eq);)) C
UZ'GQXE()\Z'). Clearly UZ'EQXe()\i) Q Xe<[UZ'€Q/\Z')). Hence UiGQXe(/\i) =
X¢([UieaAi)). Therefore, T is closed under arbitrary unions and hence,
it is Topology on X°*. O

DEFINITION 5.11. The topological space (X¢, T) is called the prime
e-fuzzy filter Spectrum of L and it is denoted by F' — Spact(L).

THEOREM 5.12. Let B = {X¢(z,) :z € L,a € (0,1]}. Then B forms
a base for some topology on T.

Proof. Clearly by (1) and (2) from Lemma 5.8, it follow that B forms
a base for some topology on X°. O]

THEOREM 5.13. The space X°€ is a Ty-space.

Proof. Let p,0 € X¢ such that o # 6. Then either p & 6 or 6 € p.
Without loss of generality, we can assume that g ¢ 6. Then § € X(u)
and p ¢ X¢(u). Thus X€ is a Ty-space. O

THEOREM 5.14. For any fuzzy filter u of L, X¢(u) = X¢(u°).

Proof. Clearly p C uf for any fuzzy filter p of L. Then X¢(u) C
X¢(u). Conversely, let 8 € X¢(u®). Then u¢ € 6. Suppose 6 ¢ X¢(u),
then p C 6. This implies pu¢ C 6° = 6. Which is impossible. Thus
0 € X¢(u) and so X¢(u®) € X¢(u). Hence X¢(pu) = X¢(uc). O

THEOREM 5.15. For any fuzzy filter 1 of L, X(p1) = Uy, e, X¢(24).

THEOREM 5.16. The lattice F F¢(L) is isomorphic with the lattice of
all open sets X°€.

Proof. The lattice of all open sets in X¢ is (7,N,U). Define the
mapping f : FF(L) — T by f(p) = X(p) for all p € FF(L).
Let pu,0 € FeF(L). Then f(pU6) = f((uVv o)) = X(uVE =
Xe(p)uXe(0) = f(WU[(0), and f(unb) = X(uNnb) = X(u)NX(0) =
f(p) N f(#). This shows f is homomorphism. Since X¢(u) = X¢(u)
and p¢ € FF(L), VX¢(u) € T, there exists u¢ € FF¢(L) such that
f(pe) = X¢(n). Hence f is onto. Next we prove that f is one to one.
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Let f(u) = f(0). Suppose that p # 6, then there exists € L such
that either p(x) < 6(z) or 6(z) < p(x). Without loss of generality, we
can assume that p(z) < 6(z). Put 0(x) = «, then by Corollary 5.3, we
can find a prime e-fuzzy filter 6 of L such that 4 C ¢ and §(z) < «a.
This implies § ¢ X¢(u) and § ¢ 6. This show that § ¢ X¢(u) and
d € X¢(#). This is a contradiction f(u) = f(#). Thus u = 6. Hence f is

an isomorphism. O

For any fuzzy subset 6 of L, X¢(0) = {p € X¢: pn € 6} is open set of
X¢and Hé(#) = X©— X¢(0) is a closed set of X¢. Also every closed set
in X¢ is the form of H¢() for all fuzzy subset of L. Then we have the
following;:

THEOREM 5.17. The closure of any A C X¢ is given by A = H®(N,capt).

Proof. Let A C X¢and f € A. Then Nyeap € B. Thus € H*(B) C
He¢(Nueap). Therefore, H*(N,eap) is a closed set containing A. Let
C' be any closed set containing A in X¢ . Then C = H°(#) for some
fuzzy subset of 6 of L. Since A C C = H¢(f), we have § C pu for
all 4 € A. Hence 8 C Nyeap . Therefore, H*(Nyeap) € H(9) = C.
Hence H®(Nyeap) is the smallest closed set containing A. Therefore,
A:H6<ﬂ#€Alu). ]
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