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e-FUZZY FILTERS OF MS-ALGEBRAS

Berhanu Assaye Alaba and Teferi Getachew Alemayehu∗

Abstract. In this article, we present the notion of e-fuzzy filters in
an MS-Algebra and characterize in terms of equivalent conditions.
The concept of D-fuzzy filters is studied and the set of equivalent
conditions under which every e-fuzzy filter is an D-fuzzy filter are
observed. Moreover we study some properties of the space of all
prime e-fuzzy filters of an MS-algebra.

1. Introduction

MS-algebras introduced by Blyth and Varlet [2] as common abstrac-
tion of de Morgan algebras and MS-algebras. And also they [3] char-
acterized the subvarieties of MS-algebras. Recently Roa [8] introduced
e-filters of MS-algebras.
On the other hand, fuzzy set theory was introduced by Zadeh [11]. Next,
fuzzy groups were studied by Rosenfield [7]. Many scholars have used
this idea to different mathematical branches such as semi-group, ring,
semi-ring, near-ring, lattice etc. For instance Yuan and Wu [10] intro-
duced the notion of fuzzy sublattice and fuzzy ideals of lattice, Swamy
and Raju [9] fuzzy ideals and congruences of lattices, Kumar [6], topol-
ogized the set of all fuzzy prime ideals of a commutative ring with unity
and studied some properties of the space, Kumar [6], studied about the
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space of prime fuzzy ideals of a ring in different way and Hadji-Abadi
and Zahedi [4] extended the result of Kumar. In this article our aim is
to present e-fuzzy filters of an MS-algebra and that every e-fuzzy filter
of an MS-algebra is an D-fuzzy filter. Finally we discuss the concept of
topological space on the set all prime e-fuzzy filters.

2. Preliminaries

In this section, we recall basic definitions and results which will be
used in this article. For in details in ordinary crisp theory of e-filters of
MS-algebras, we refer to [8].

Definition 2.1. [2] An MS-algebra is an algebra (L,∨,∧,◦ , 0, 1) of
type (2, 2, 1, 0, 0) such that (L,∨,∧, 0, 1) is a bounded distributive lattice
and a → a◦ is a unary operation satisfying the conditions a ≤ a◦◦,
(a ∧ b)◦ = a◦ ∨ b◦ and 1◦ = 0 for all a, b ∈ L
A de Morgan algebra is an MS-algebra satisfying a◦◦ = a for all a ∈ L.

Lemma 2.2. [2] Let L be any MS-algebra and a, b ∈ L. Then

(1) 0◦ = 1
(2) a ≤ b⇒ b◦ ≤ a◦

(3) a◦◦◦ = a◦

(4) (a ∨ b)◦ = a◦ ∧ b◦
(5) (a ∨ b)◦◦ = a◦◦ ∨ b◦◦
(6) (a ∧ b)◦◦ = a◦◦ ∧ b◦◦

Definition 2.3. [8] For any filter F of an MS-algebra L, define F e

as the set F e = {x ∈ L/x◦ ≤ a◦ for some a ∈ F}

Definition 2.4. [8] A filter F of an MS-algebra L is called an e-filter
of L if F = F e

An element a of an MS-algebra L is called a dense element if a◦ = 0.
The set of all dense elements in MS-algebra L is denoted by D.

Definition 2.5. [8] A filter F of an MS-algebra L is called a D-filter
of L if D ⊆ F .

Remember that, for any set S a function µ : S −→ ([0, 1],∧,∨)
is called a fuzzy subset of S, where [0, 1] is a unit interval, α ∧ β =
min{α, β} and α ∨ β = max{α, β} for all α, β ∈ [0, 1].
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Let µ : S → [0, 1]. For every α ∈ [0, 1], the level subset µ of S is
µα = {x ∈ L : α ≤ µ(x)}.

Definition 2.6. Let x ∈ S, 0 < α ≤ 1. A fuzzy point xα of S is a
fuzzy subset of S defined as

xα(z) =

{
α if z = x

0 otherwise

.

We define the binary operations ” + ” and ”.” on all fuzzy subsets of
a lattice L as: (µ + θ)(x) = sup{µ(a) ∧ θ(b) : a, b ∈ L, a ∨ b = x} and
(µ.θ)(x) = sup{µ(a) ∧ θ(b) : a, b ∈ L, a ∧ b = x}.

The intersection of fuzzy filters of L is a fuzzy filter. However the
union of fuzzy filters may not be fuzzy filter. The least upper bound of a
fuzzy filters µ and θ of L is denoted as µ∨θ = ∩{σ ∈ FF (L) : µ∪θ ⊆ σ}.

If µ and θ are fuzzy filters of L, then µ.θ = µ ∨ θ and µ+ θ = µ ∩ θ

Let µ be a fuzzy subset of a lattice L. The smallest fuzzy filter of L
containing µ is called a fuzzy filter of L induced by µ and denoted by
[µ) and [µ) = ∩{θ : θ is a fuzzy filter of L, µ ⊆ θ}

Definition 2.7. [9] A fuzzy subset µ of a bounded lattice L is said
to be a fuzzy ideal of L, if for all x, y ∈ L,

1. µ(0) = 1,
2. µ(x ∨ y) ≥ µ(x) ∧ µ(y)
3. µ(x ∧ y) ≥ µ(x) ∨ µ(y) for all x, y ∈ L.

In [9], Swamy and Raju observed that, a fuzzy subset µ of a a
bounded lattice L is a fuzzy ideal of L if and only if µ(0) = 1 and
µ(x ∨ y) = µ(x) ∧ µ(y) for all x, y ∈ L.

Definition 2.8. [9] A fuzzy subset µ of a bounded lattice L is said
to be a fuzzy filter of L, if for all x, y ∈ L,

1. µ(1) = 1,
2. µ(x ∨ y) ≥ µ(x) ∧ µ(y)
3. µ(x ∧ y) ≥ µ(x) ∨ µ(y) for all x, y ∈ L.
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In [9] a fuzzy subset µ of a a bounded lattice L is a fuzzy filter of L
if and only if µ(1) = 1 and µ(x ∨ y) = µ(x) ∧ µ(y) for all x, y ∈ L.

Theorem 2.9. [9] Let µ be a fuzzy subset of L. Then µ is a fuzzy
ideal of L if and only if, for any α ∈ [0, 1], µα is an ideal of L.

Definition 2.10. [9] A proper fuzzy ideal µ of L is called prime fuzzy
ideal of L if for any two fuzzy ideals λ, ν of L, λ ∩ ν ⊆ µ ⇒ λ ⊆ µ or
ν ⊆ µ.

µ is a prime fuzzy ideal of L if and only if Imµ = {1, β} , β ∈ [0, 1)
and µ∗ = {x ∈ L : µ(x) = 1} is a prime ideal of L.

Throughout in the next sections L stands for an MS-algebra unless
otherwise mentioned.

3. e-Fuzzy Filters of MS-algebras

In this section, the concept of e- fuzzy filters is introduced and some
basic properties of e-fuzzy filter are observed. The concept of D-fuzzy
filter is introduced and we obtain a set of equivalent conditions for any
e-fuzzy filter to become an D-fuzzy filter. We prove that the class of
e-fuzzy filters FF e(L) is a complete distributive lattice with relation ⊆.

Definition 3.1. Let µ be any fuzzy filter of an MS-algebra L, an
extension of µ define as the fuzzy subset µe(x) = sup{µ(a) : x◦ ≤
a◦, a ∈ L} for all x ∈ L.

The following Lemma reveals some basic properties of µe

Lemma 3.2. Let µ and ν be any two fuzzy filters of an MS-algebra
L. Then

(1) µe is a fuzzy filter of L
(2) µ ⊆ µe,
(3) µ ⊆ ν ⇒ µe ⊆ νe,
(4) (µ ∩ ν)e = µe ∩ νe,
(5) (µe)e = µe.

Proof. For elements x, y, a, b ∈ L,
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(1) µe(1) = sup{µ(a) : 1◦ ≤ a◦, a ∈ L} ≥ µ(1) = 1. Hence µe(1) = 1.
Next,

µe(x) ∧ µe(y) = sup{µ(a) : x◦ ≤ a◦} ∧ sup{µ(b) : y◦ ≤ b◦}
= sup{µ(a) ∧ µ(b) : x◦ ≤ a◦, y◦ ≤ b◦}
≤ sup{µ(a ∧ b) : (x ∧ y)◦ ≤ (a ∧ b)◦}
= µe(x ∧ y)

and

µe(x) ∨ µe(y) = sup{µ(a) : x◦ ≤ a◦} ∨ sup{µ(b) : y◦ ≤ b◦}
= sup{µ(a) ∨ µ(b) : x◦ ≤ a◦, y◦ ≤ b◦}
≤ sup{µ(a ∨ b) : (x ∨ y)◦ ≤ (a ∨ b)◦}
= µe(x ∨ y)

Thus µe is a fuzzy filter of L.
(2) µe(x) = sup{µ(a) : x◦ ≤ a◦} ≥ µ(x). Hence µ ⊆ µe.
(3) Suppose that µ ⊆ ν, then

νe(x) = sup{ν(a) : x◦ ≤ a◦} ≥ sup{µ(a) : x◦ ≤ a◦} = µe(x).
Hence µe ⊆ νe

(4) By (3) (µ ∩ ν)e ⊆ µe ∩ νe.
Conversely,

(µe ∩ νe)(x) = µe(x) ∧ νe(x)

= sup{µ(a) : x◦ ≤ a◦} ∧ sup{ν(b) : x◦ ≤ b◦}
≤ sup{µ(a◦◦) : x◦◦◦ ≤ a◦◦◦} ∧ sup{ν(b◦◦) : x◦◦◦ ≤ b◦◦◦}
= sup{µ(a◦◦) ∧ ν(b◦◦) : x◦◦◦ ≤ a◦◦◦ ∧ b◦◦◦}
≤ sup{µ(a◦◦ ∨ b◦◦) ∧ ν(a◦◦ ∨ b◦◦) : x◦◦◦ ≤ a◦◦◦ ∧ b◦◦◦}
≤ sup{(µ ∩ ν)(a◦◦ ∨ b◦◦) : x◦ ≤ ((a◦◦ ∨ b◦◦)◦}
= (µ ∩ ν)e(x)

Hence (µe ∩ νe) = (µ ∩ ν)e.
(5)

(µe)e(x) = sup{µe(a) : x◦ ≤ a◦, a ∈ L}
= sup{sup{µ(z) : a◦ ≤ z◦, z ∈ L} : x◦ ≤ a◦, a, x ∈ L}
= sup{µ(z) : x◦ ≤ z◦, z ∈ L}
= µe(x)
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Hence (µe)e = µe.

Now we define e-fuzzy filter in an MS-algebra.

Definition 3.3. A fuzzy filter µ of an MS-algebra L is called an
e-fuzzy filter of L if µ = µe.

Theorem 3.4. µ is an e-fuzzy filter of an MS-algebra L if and only
if, ∀ α ∈ [0, 1], µα is an e-filter of L.

Theorem 3.5. F is an e-filter of an MS-algebra L if and only if χF
is an e-fuzzy filter of L.

Lemma 3.6. Let D be the set of all dense elements of L. Then χD is
an e-fuzzy filter.

In the Lemma 3.2(4), we can mention that the intersection of two
e-fuzzy filters of an MS-algebra is an e-fuzzy filter. But the union of two
e-fuzzy filters may not be the e-fuzzy filter.

Example 3.7. Let L be the following MS-algebra described in the
diagram 1.

diagram 1

Consider µ and ν a fuzzy set of L defined as µ(a) = µ(0) = 0.5, µ(b) =
µ(1) = 1 and ν(0) = ν(b) = 0.7, ν(a) = 0.8 and ν(1) = 1. It can be
easily verified that µ and ν are e-fuzzy filters of L. But µ ∪ ν is not an
e-fuzzy filter of L. Since µ ∪ ν is not an fuzzy filter of L i.e

(µ ∪ ν)(a ∧ b) = max{µ(a ∧ b), ν(a ∧ b)} = max{µ(0), ν(0)}
= max{0.5, 0.7} = 0.7

and
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(µ ∪ ν)(a) ∧ (µ ∪ ν)(b) = max{µ(a), ν(a)} ∧max{µ(b), ν(b)}
= max{0.5, 0.8} ∧max{1, 0.7} = 0.8 ∧ 1 = 0.8

Thus (µ ∪ σ)(a ∧ b) = 0.7 6= 0.8 = (µ ∪ σ)(a) ∧ (µ ∪ σ)(b)

Corollary 3.8. Let {µi : i ∈ Ω} be a family of e-fuzzy filters of an
MS-algebra L. Then ∩i∈Ωµi is an e-fuzzy filter of L.

In the following, we characterize the e-fuzzy filters

Theorem 3.9. Let µ be a fuzzy filter of an MS-algebra L. Then, the
following are equivalent.

(1) µ is an e-fuzzy filter,
(2) µ(x) = µ(x◦◦),
(3) For x, y ∈ L , x◦ = y◦ implies µ(x) = µ(y).

Proof. (1) ⇒ (2). Suppose that µ is an e-fuzzy filter of L. For
x, a ∈ L, µ(x) = µe(x) = sup{µ(a) : x◦ ≤ a◦} = sup{µ(a) : x◦◦◦ =
x◦ ≤ a◦} = µe(x◦◦) = µ(x◦◦).

(2) ⇒ (3). Suppose that condition (2) holds. Let x, y ∈ L, x◦ = y◦.
Then x◦◦ = y◦◦. Thus µ(x) = µ(x◦◦) = µ(y◦◦) = µ(y). Hence µ(x) =
µ(y).

(3)⇒ (1). Suppose that condition (3) holds. µe(x) = sup{µ(a) : x◦ ≤
a◦} = sup{µ(a∧x) : x◦ ≤ a◦} ≤ µ(x). Since by (3) a◦ = x◦∨a◦ = (a∧x)◦

and µ(x ∧ a) ≤ µ(x). This implies µe ⊆ µ. Clearly µ ⊆ µe. Hence µ is
an e-filter of L.

Theorem 3.10. For any fuzzy filter µ of an MS-algebra L, a fuzzy
subset µ◦(x) = sup{µ(b) : x◦∧ b = 0 , b ∈ L} ∀ x ∈ L is an e-fuzzy filter.

Proof. For any x, y ∈ L,

µ◦(1) = sup{µ(b) : 1◦ ∧ b = 0, b ∈ L} ≥ µ(1) = 1

and

µ◦(x ∧ y) = sup{µ(b) : (x ∧ y)◦ ∧ b = 0, b ∈ L}
= sup{µ(b) : (x◦ ∨ y◦) ∧ b = 0, b ∈ L}
= sup{µ(b) ∧ µ(b) : (x◦ ∧ b) ∨ (y◦ ∧ b) = 0, b ∈ L}
= sup{µ(b) : x◦ ∧ b = 0, b ∈ L} ∧ sup{µ(b) : y◦ ∧ b = 0, b ∈ L}
= µ◦(x) ∧ µ◦(y)
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This implies µ◦ is a fuzzy filter of L. Next we prove that µ is an e-fuzzy
filter. Now

µ◦(x◦◦) = sup{µ(c) : x◦◦◦∧c = 0, c ∈ L} = sup{µ(c) : x◦∧c = 0, c ∈ L} = µ◦(x).

Therefor µ◦ is an e-fuzzy filter of L.

Definition 3.11. A fuzzy filter µ of an MS-algebra L is called a
D-fuzzy filter of L if χD ⊆ µ .

Theorem 3.12. A fuzzy filter µ of an MS-algebra L is a D-fuzzy
filter of L if and only if, ∀ α ∈ [0, 1] , µα is a D-filter.

Proof. Suppose that µ is aD-fuzzy filter of L, then χD(x) ≤ µ(x) ∀ x ∈
L. Let x ∈ D. Then χD(x) = 1 ≤ µ(x). This implies µ(x) = 1. This
implies x ∈ µ1 ⊆ µα ∀α ∈ [0, 1], and so D ⊆ µα. Hence µα is a D-filter.
Conversely, suppose that µα is a D-filter of L, ∀ α ∈ [0, 1]. If x /∈ D,
then χD(x) = 0 ≤ µ(x). If x ∈ D, then x ∈ D ⊆ µα,∀ α ∈ [0, 1].
This implies x ∈ D ⊆ µ1, for α = 1. Thus µ(x) ≥ 1. This implies
χD(x) = 1 ≤ µ(x). Therefore for all x ∈ L, χD(x) ≤ µ(x). Hence the
result.

Theorem 3.13. F is a D-filter of L if and only if χF is a D-fuzzy
filter of L.

Theorem 3.14. Any e-fuzzy filter of an MS-algebra L is D-fuzzy
filter.

Proof. Let µ be any e-fuzzy filter of L. For any x ∈ L. If χD(x) = 0,
then χD(x) ≤ µ(x). If χD(x) = 1, then x ∈ D. Thus µe(x) = sup{µ(a) :
x◦ ≤ a◦, a ∈ L} = sup{µ(a) : x◦◦◦ ≤ a◦, a ∈ L} = µe(x◦◦) = µ(x◦◦) =
µ(1) = 1. This implies χD ⊆ µe = µ. Hence µ is a D-fuzzy filter.

Corollary 3.15. χD is the smallest e-fuzzy filter of an MS-algebra.

We denote the class of all e-fuzzy filters of an MS-algebra L by FF e(L)

Theorem 3.16. The class FF e(L) is a complete distributive lattice
with relation ⊆.

Proof. Since χD, χL ∈ FF e(L), FF e(L) 6= ∅. Clearly (FF e(L),⊆) is
a partially order set. Now for any µ, σ ∈ FF e(L), define µ∧σ = µ∩σ and
µtσ = (µ∨σ)e, where (µ∨σ)e(x) = sup{µ(a)∧µ(b) : x◦ ≤ (a∧b)◦, a, b ∈
L} ∀ x ∈ L. It can be easily verified that µ ∩ σ, (µ ∨ σ)e ∈ FF e(L) and
µ ∩ σ is the greatest lower bound of µ and σ. We need to show µ t σ is
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the least upper bound of µ and σ. Since µ, σ ⊆ µ∨σ ⊆ (µ∨σ)e, (µ∨σ)e

is an upper bound of µ and σ. Let β be any e-fuzzy filter of L such that
µ ⊆ β and σ ⊆ β.

(µ ∨ σ)e(x) = Sup{µ(a) ∧ µ(b) : (x)◦ ≤ (a ∧ b)◦ ; a, b ∈ L}
≤ Sup{β(a) ∧ β(b) : (x)◦ ≤ (a ∧ b)◦, a, b ∈ L}
= Sup{β(a ∧ b) : (x)◦ ≤ (a ∧ b)◦, a, b ∈ L}
= βe(x) = β(x)

Hence (µ ∨ σ)e = sup{µ, σ}. Thus (FF e(L),⊆) is a lattice. Since
χ{D} and χL are the smallest and the greatest e-fuzzy filters of FF e(L),
(FF e(L),∩,t, χ{D}, χL) is a bounded lattice. By Corollary 3.8 any
subfamily of e-fuzzy filters of FF e(L) has infimum in FF e(L) and
FF e(L) has greatest element. Hence (FF e(L),∩,t, χ{D}, χL) is a com-
plete bounded lattice. For any µ, σ, and θ ∈ FF e(L), we obtain (µtσ)∩
(µtθ) = (µ∨σ)e∩(µ∨θ)e = ((µ∨σ)∩(µ∨θ))e = (µ∨(σ∩θ))e = µt(σ∩θ).
Therefore (FF e(L),∩,t, χ{D}, χL) is a bounded and complete distribu-
tive lattice.

4. Prime e-Fuzzy Filters and Maximal e-fuzzy Filters of MS-
algebras

In this section, we introduce prime e-fuzzy filters and maximal e-fuzzy
filters of MS-algebras and we discuss some properties of them.

Definition 4.1. A proper e-fuzzy filter µ in MS-algebra L is called a
prime e-fuzzy filter if for any fuzzy filters λ and ν of L, λ∩ν ⊆ µ⇒ λ ⊆ µ
or ν ⊆ µ.

Theorem 4.2. A proper filter F is a prime e-filter of L and α ∈ [0, 1)
if and only if the fuzzy subset given by

F 1
α(x) =

{
1 if x ∈ F
α if x /∈ F

is a prime e-fuzzy filter of L.

Proof. Suppose that a proper filter F of L is a prime e-filter of L and
α ∈ [0, 1). Clearly F 1

α is a proper fuzzy filter of L. Since (F 1
α)1 = F

and (F 1
α)α = L are e-filters of L. This implies by Theorem 3.4, F 1

α is a
proper e-fuzzy filter of L. Now we prove that F 1

α is a prime e-fuzzy filter.
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Let ν and θ be any fuzzy filters of L such that ν ∩ θ ⊆ F 1
α. Suppose if

possible that ν * F 1
α and θ * F 1

α. Then there exist x, y ∈ L such that
ν(x) > F 1

α(x) and θ(y) > F 1
α(y). This indicates F 1

α(x) = F 1
α(y) = α and

so x /∈ F and y /∈ F . Since F is prime, x∨ y /∈ F and so F 1
α(x∨ y) = α.

Now, (ν ∩ θ)(x ∨ y) = ν(x ∨ y) ∧ θ(x ∨ y) ≥ ν(x) ∧ θ(y) > α ∧ α = α =
F 1
α(x∨y), which is a contradiction to our assumption ν∩θ ⊆ F 1

α. Hence
F 1
α is a prime e-fuzzy filter. Conversely, suppose that F 1

α is a prime e-
fuzzy filter. Clearly F 1

α is an e-fuzzy filter and (F 1
α)1 = F . Hence F is an

e-filter of L. Let A and B be any filters of L such that A∩B ⊆ F . Then
(A ∩ B)1

α = A1
α ∩ B1

α ⊆ F 1
α. Since F 1

α is prime, A1
α ⊆ F 1

α or A1
α ⊆ F 1

α.
This implies B ⊆ F or A ⊆ F . Hence F is a prime e-filter of L.

Example 4.3. Let us consider an MS-algebra L described in the
diagram 2

0 a b c d e 1
◦ 1 e e c d b 0

diagram 2

In diagram 2, A = {1}, B = {1, e}, C = {1, e, c}, D = {1, e, d}, E =
{1, e, d, c, b}, F = {1, e, d, c, b, a} are filters of L and all except B are
prime filters of L and also A,C and F are prime e-filters of L.

In addition to this, it can be easily verified that A1
α,C1

α, and F 1
α are

prime e-fuzzy filters of L.

Corollary 4.4. A proper e-filter F of L is a prime if and only if χF
is a prime e-fuzzy filter of L.
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Theorem 4.5. A proper e-fuzzy filter µ of L is a prime e-fuzzy filter
if and only if Img(µ) = {1, α}, where α ∈ [0, 1) and the set µ∗ = {x ∈
L : µ(x) = 1} is a prime e-filter of L.

Proof. The converse part of this theorem follows from Lemma 4.2.
Suppose that µ is a prime e-fuzzy filter. Clearly 1 ∈ Im(µ) and since µ
is proper, there is x ∈ L such that µ(x) < 1. We prove that µ(x) = µ(y)
for all x, y ∈ L− µ∗. Suppose that µ(x) 6= µ(y) for some x, y ∈ L− µ∗.
Without loss of generality we can assume that µ(y) < µ(x) < 1. Define
fuzzy subsets θ and λ as follows:

θ(z) =

{
1 if z ∈ [x)

0 otherwise.

and

λ(z) =

{
1 if z ∈ µ∗
µ(x) otherwise.

for all z ∈ L. Then it can be easily verified that both θ and λ are fuzzy
filters of L. Let z ∈ L. If z ∈ µ∗, then (θ ∩ λ)(z) ≤ 1 = µ(z). If
z ∈ [x) − µ∗, then z = x ∨ z, and we have (θ ∩ λ)(z) = θ(z) ∧ λ(z) =
1 ∧ µ(x) = µ(x) ≤ µ(z).
Also if z /∈ [x), then θ(z) = 0, so that (θ ∩ λ)(z) = 0 ≤ µ(z). Therefore
for all x ∈ L, (θ ∩ λ)(x) ⊆ µ(x). But we have θ(x) = 1 > µ(x)
and λ(y) = µ(x) > µ(y). This implies λ * µ and θ * λ, which is
a contradiction. Thus µ(x) = µ(y) for all x, y ∈ L − µ∗ and hence
Im(µ) = {1, α} for some α ∈ [0, 1). Let P = {x ∈ L : µ(x) = 1}. Since
µ is proper, we get that P is a proper e-filter of L such that

µ(z) =

{
1 if z ∈ P
α if z /∈ P.

for α 6= 1. Hence by Lemma 4.2, P = µ∗.

Theorem 4.6. If µ is a prime e-filter of L, then µ(x ∨ y) = µ(x) or
µ(x ∨ y) = µ(y) for all x, y ∈ L.

Proof. Suppose that µ is a prime e-filter of L, then there exists a
prime e-filter F of L and α ∈ [0, 1) such that

µ(x) =

{
1 if x ∈ F
α if x /∈ F
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for all x ∈ L. If x, y ∈ F , then x ∨ y ∈ F and so 1 = µ(x) = µ(y) =
µ(x∨y). If x ∈ F and y /∈ F , then x∨y ∈ F and so 1 = µ(x) = µ(x∨y).
If x /∈ F and y /∈ F , then x∨ y /∈ F and so α = µ(x) = µ(y) = µ(x∨ y).
Hence the Theorem holds.

Definition 4.7. A proper fuzzy filter µ in MS-algebra L is called a
maximal fuzzy filter if Img(µ) = {1, α}, where α ∈ [0, 1). and the set
µ∗ is a maximal filter of L.

Definition 4.8. A proper e-fuzzy filter µ in MS-algebra L is called
a maximal e-fuzzy filter if Img(µ) = {1, α}, where α ∈ [0, 1). and the
set µ∗ is a maximal e-filter of L.

Corollary 4.9. Any maximal e-fuzzy filter of L is a prime e-fuzzy
filter.

Proof. Let µ be a maximal e-fuzzy filter of L. Then Imµ = {1, α},
and µ∗ is a maximal e-filter of L. Since every maximal e-filter of L is a
prime e-filter of L. This implies µ∗ is a prime e-filter of L. Hence µ is
a prime e-filter of L. But the converse is not true, since in the Example
4.3, A1

α, C1
α are prime e-fuzzy filters of L but not maximal e-fuzzy filters

of L.

Theorem 4.10. Every maximal fuzzy filter of an MS-algebra is an
e-fuzzy filter.

Corollary 4.11. Every maximal fuzzy filter of an MS-algebra is
prime e-fuzzy filter.

Theorem 4.12. If µ is minimal in the class of all prime fuzzy filters
L containing a given e-fuzzy filter, then µ is an e-fuzzy filter of L.

Proof. Suppose that µ is minimal in the class of all prime fuzzy filters
containing an e-fuzzy filter θ of L. We prove that µ is an e-fuzzy filter.
Since µ is a prime fuzzy filter of L, there exists a prime filter P of L
such

µ(z) =

{
1 if z ∈ P
α otherwise.

for some α ∈ [0, 1). Suppose that µ is not an e-fuzzy filter of L, then
there exist x, y ∈ L, x◦ = y◦ such that µ(x) 6= µ(y). Without loss of
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generality, assume µ(x) = 1 and µ(y) = α. Consider a fuzzy ideal φ of
L defined by

φ(z) =

{
1 if z ∈ (L− P ) ∨ (x ∨ y]

α otherwise.

Then θ ∩ φ ≤ α. Otherwise there exists a ∈ L such that φ(a) = 1 and
θ(a) > α. This implies a ∈ (L− P ) ∨ (x ∨ y].

=⇒ a = r ∨ s for some r ∈ L− P and s ∈ (x ∨ y]

=⇒ a = r ∨ s = r ∨ (s ∧ (x ∨ y)) = (r ∨ s) ∧ (r ∨ x ∨ y) ≤ r ∨ x ∨ y

As x◦ = y◦ implies (r ∨ x ∨ y)◦ = (r ∨ y)◦. Since θ is an e-fuzzy filter of
L, α < θ(a) = θ(r∨ s) ≤ θ(r∨x∨ y) = θ(r∨ y) ≤ µ(r∨ y). This implies
1 = µ(r ∨ y).

Hence µ(y) = 1 or µ(r) = 1 , which is a contradiction. Thus θ∩φ ≤ α.

This implies there exists a prime fuzzy filter η such that η ∩ φ ≤ α
and θ ⊆ η. Clearly x∨ y ∈ (L− P )∨ (x∨ y]. This implies φ(x∨ y) = 1.
Since φ ∩ η ≤ α, η(x ∨ y) ≤ α < µ(x ∨ y) = 1. This implies µ * η.
This indicates µ is not minimal in the class of all prime fuzzy filters
containing a given e-fuzzy filter, which is a contradiction. Therefore, µ
is an e-fuzzy filter.

Theorem 4.13. Let L be an Ms-algebra. Then the following condi-
tions are equivalent.

(1) L is a de Morgan algebra,

(2) For all x, y ∈ L, x◦ = y◦ implies x = y,

(3) Every fuzzy filter is an e-fuzzy filter,

(4) Every prime fuzzy filter is an e-fuzzy filter.

Proof. The proof of (1)⇒ (2), (2)⇒ (3), and (3)⇒ (4) are straight-
forward. Now prove that (4) ⇒ (1). Suppose that x 6= x◦◦ for x ∈ L.
ThIs implies x < x◦◦. We have (x] ∩ [x◦◦) = ∅. We know that χ(x]

and χ[x◦◦) are fuzzy ideal and fuzzy filter of L respectively such that
χ(x] ∩ χ[x◦◦) = χ∅ (the constant fuzzy subset attaining, value 0), there
exists a prime fuzzy filter θ of L such that χ[x◦◦) ⊆ θ and χ(x] ∩ θ = χ∅.
Since χ[x◦◦) ⊆ θ, we get θ(x) = 1. Also χ(x](x) ∧ θ(x) = 0. This implies
θ(x) = 0, which is a contradiction θ is an e-filter. Hence x = x◦◦ and so
L is a de Morgan algebra.
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Theorem 4.14. Let µ be a prime fuzzy filter of an MS-algebra L, and
µ(0) = 0. Then a fuzzy subset `(µ) of L defined as `(µ)(x) = µ

′
(x◦) ∀x ∈

L is an e-fuzzy filter of L.

Proof. `(µ)(1) = µ
′
(1◦) = 1− µ(1◦) = 1− µ(0) = 1.

`(µ)(x ∧ y) = µ
′
((x ∧ y)◦) = 1− µ(x◦ ∨ y◦)

= (1− µ(x◦)) ∧ (1− µ(y◦))

= µ
′
(x◦) ∧ µ′(y◦) = `(µ)(x) ∧ `(µ)(y)

This implies `(µ) is a fuzzy filter of L. Next we prove that `(µ) is an
e-fuzzy filter. Since x ≤ x◦◦, x◦◦ = x ∨ x◦◦,

`(µ)(x◦◦) = `(µ)(x∨x◦◦) = µ
′
((x∨x◦◦)◦) = µ

′
(x◦∧x◦◦◦) = µ

′
(x◦) = `(µ)(x).

This implies `(µ) is an e-fuzzy filter of L by Theorem 3.9

Corollary 4.15. Let µ be a maximal fuzzy filter of an MS-algebra
L and µ(0) = 0. Then `(µ) is an e-fuzzy filter of L.

5. The space of prime e-fuzzy filters

In this section, we discuss some properties of prime e-fuzzy filters of
an MS-algebra and topological properties of the collection of all prime
e-fuzzy filters of an MS-algebra.

Theorem 5.1. Let α ∈ [0, 1), µ be an e-fuzzy filter and σ be a fuzzy
ideal of an MS-algebra L such that µ∩σ ≤ α. Then there exists a prime
e-fuzzy filter β such that µ ⊆ β and β ∩ σ ≤ α.

Proof. Put ξ = {θ ∈ FF e(L) : µ ⊆ θ and θ∩σ ≤ α}. Clearly (ξ,⊆) is
a poset. Let Q = {µi : i ∈ Ω} be a chain in ξ. We prove that ∪i∈Ωµi ∈ ξ.
Clearly (∪i∈Ωµi)(1) = 1. For any x, y ∈ L,

(∪i∈Ωµi)(x) ∧ (∪i∈Ωµi)(y) = sup{µi(x) : i ∈ Ω} ∧ sup{µj(y) : j ∈ Ω}
= sup{µi(x) ∧ µj(y) : i, j ∈ Ω}
≤ sup{(µi ∪ µj)(x) ∧ (µi ∪ µj)(y) : i, j ∈ Ω}
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Since Q is a chain, µi ⊆ µj or µj ⊆ µi. Without loss of generality,
assume µj ⊆ µi. This implies µi ∪ µj = µi. This shows,

(∪i∈Ωµi)(x) ∧ (∪i∈Ωµi)(y) ≤ sup{µi(x) ∧ µi(y), i ∈ Ω}
= sup{µi(x ∧ y), i ∈ Ω}
= (∪i∈Ωµi)(x ∧ y)

Again (∪i∈Ωµi)(x) = sup{µi(x) : i ∈ Ω} ≤ sup{µi(x ∨ y) : i ∈ Ω} =
(∪i∈Ωµi)(x ∨ y). Similarly (∪i∈Ωµi)(y) ≤ (∪i∈Ωµi)(x ∨ y). This implies
(∪i∈Ωµi)(x) ∨ (∪i∈Ωµi)(y) ≤ (∪i∈Ωµi)(x ∨ y). Hence ∪i∈Ωµi is a fuzzy
filter of L. Now prove that (∪i∈Ωµi) is e-fuzzy filter.

(∪i∈Ωµi)
e(x) = sup{(∪i∈Ωµi)(a) : x◦ ≤ a◦, a ∈ L}

= sup{sup{µi(a) : i ∈ Ω} : x◦ ≤ a◦, a ∈ L}
= sup{sup{µi(a) : x◦ ≤ a◦, a ∈ L} : i ∈ Ω}
= sup{µei (x), i ∈ Ω} = sup{µi(x), i ∈ Ω}
= (∪i∈Ωµi)(x)

Thus ∪i∈Ωµi is an e-fuzzy filter of L. Since µi ∩ σ ≤ α for each i ∈ Ω,

((∪i∈Ωµi) ∩ σ)(x) = (∪i∈Ωµi)(x) ∧ σ(x)

= sup{µi(x), i ∈ Ω} ∧ σ(x)

= sup{µi(x) ∧ σ(x), i ∈ Ω}
= sup{(µi ∩ σ)(x), i ∈ Ω} ≤ α

Thus (∪i∈Ωµi)∩ θ) ≤ α. Hence ∪i∈Ωµi ∈ ξ. By applying Zorn’s Lemma,
ξ has a maximal element, say δ, i.e, δ is an e-fuzzy filter of L such that
µ ⊆ δ and δ ∩ σ ≤ α. Next we show that δ is a prime e-fuzzy filter of L.
Assume that δ is not a prime e-fuzzy filter. Let λ1, λ2 ∈ FF (L), and
λ1 ∩ λ2 ⊆ δ such thatλ1 * δ and λ2 * δ. If we put δ1 = (λ1 ∨ δ)e and
δ2 = (λ2∨δ)e, then both δ1, δ2 are e-fuzzy filters of L properly containing
δ. Since δ is a maximal in ξ, we have δ1, δ2 /∈ ξ. Thus we show that
δ1 ∩ σ � α and δ2 ∩ σ � α. This implies there exist x, y ∈ L such that
(δ1 ∩ σ)(x) > α and (δ2 ∩ σ)(y) > α.
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Now we have,

α < (δ1 ∩ σ)(x) ∧ (δ2 ∩ σ)(y)

= δ1(x) ∧ δ2(y) ∧ σ(x) ∧ σ(y)

≤ δ1(x ∨ y) ∧ δ2(x ∨ y) ∧ σ(x ∨ y)

= (δ1 ∩ σ)(x ∨ y) ∧ (δ2 ∩ σ)(x ∨ y)

= (((δ1 ∩ σ) ∩ (δ2 ∩ σ))(x ∨ y)

= (((δ2 ∩ δ2) ∩ σ)(x ∨ y)

= (((λ1 ∨ δ)e ∩ (λ2 ∨ δ)e) ∩ σ)(x ∨ y)

= ((λ1 ∩ λ2) ∨ δ)e ∩ σ)(x ∨ y)

= (δe ∩ σ)(x ∨ y)

= (δ ∩ σ)(x ∨ y).

Which is a contradiction δ ∩ σ ≤ α. This implies δ is a prime e-fuzzy
filter of L.

Corollary 5.2. Let µ be an e-fuzzy filter and σ be a fuzzy ideal of
an MS-algebra L such that µ∩σ = 0. Then there exists a prime e-fuzzy
filter β such that µ ⊆ β and β ∩ σ = 0.

Corollary 5.3. Let α ∈ [0, 1), µ be an e-fuzzy filter of an MS-
algebra L and µ(x) ≤ α. Then there exists a prime e-fuzzy filter θ of L
such that µ ⊆ θ and θ(x) ≤ α.

Proof. Put ξ = {θ ∈ FF e(L) : µ ⊆ θ and θ(x) ≤ α}. Clearly (ξ,⊆) is
a poset. Let Q = {µi : i ∈ Ω} be a chain in ξ. We prove that ∪i∈Ωµi ∈ ξ.
By Theorem 5.1, (∪i∈Ωµi) is an e-fuzzy filter of L. Since µi ⊆ θ for each
i ∈ Ω and θ(x) ≤ α, (∪i∈Ωµi)(x) = sup{µi(x), i ∈ Ω} ≤ θ(x) ≤ α.
Hence ∪i∈Ωµi ∈ ξ. By applying Zorn’s Lemma, ξ has a maximal element,
say δ, i.e, δ is an e-fuzzy filter of L such that µ ⊆ δ and δ(x) ≤ α. Next
we show that δ is a prime e-fuzzy filter of L. Assume that δ is not a
prime e-fuzzy filter. Let λ1, λ2 ∈ FF (L), and λ1 ∩ λ2 ⊆ δ such that
λ1 * δ and λ2 * δ. If we put δ1 = (λ1∨δ)e and δ2 = (λ2∨δ)e, then both
δ1, δ2 are e-fuzzy filters of L properly containing δ. Since δ is a maximal
in ξ, we get δ1, δ2 /∈ ξ. This implies δ1(x) > α and δ2(x) > α. We have
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δ1(x) ∧ δ2(x) ≥ (δ1 ∩ δ2)(x) > α. Which implies

α ≤ δ1(x) ∧ δ2(x)

= ((λ1 ∨ δ)e ∩ (λ2 ∨ δ)e)(x)

= ((λ1 ∩ λ2) ∨ δ)e(x)

= δe(x), becouse λ1 ⊆ δ and λ2 ⊆ δ

= δ(x).

Which is a contradiction δ(x) ≤ α. Thus δ is a prime e-fuzzy filter of
L.

Corollary 5.4. For any e-fuzzy filter µ of an MS-algebra L, we have
µ = ∩{σ : σ is a prime e-fuzzy filter of L, µ ⊆ σ}.

Proof. Let µ be any e-fuzzy filter of L. Put η = ∩{θ : θ is a prime
e-fuzzy filter such that µ ⊆ θ}. Now, we prove that µ = η. Clearly
µ ⊆ η. Suppose that η(a) > µ(a) for some a ∈ L. Put α = µ(a). This
implies µ ⊆ µ and µ(a) ≤ α. Thus by the Corollary 5.3, there exists
a prime e-fuzzy filter δ such that µ ⊆ δ and δ(a) ≤ α. Since η ⊆ δ,
η(a) ≤ α. Which is a contradiction for η(a) > α. Hence η ⊆ µ. Hence
µ = η. This implies every proper e-fuzzy filter of L is the intersection of
all prime e-fuzzy filters containing it.

Corollary 5.5. Let L be an MS-algebra. Then the intersection of
all prime e-fuzzy filters of L is equal to χD.

Let L be an MS-algebra and Xe denotes the set of all prime e-fuzzy
filters of L. For a fuzzy subset θ of L, define He(θ) = {µ ∈ Xe : θ ⊆ µ},
and Xe(θ) = {µ ∈ Xe : θ * µ}.

Lemma 5.6. For any fuzzy filters λ and ν of L, we have

1. λ ⊆ ν ⇒ Xe(λ) ⊆ Xe(ν),
2. Xe(λ ∨ ν) = Xe(λ) ∪Xe(ν),
3. Xe(λ ∩ ν) = Xe(λ) ∩Xe(ν)

Proof. (1) Let µ ∈ Xe(λ). Then λ * µ and so ν * µ. Thus µ ∈ Xe(ν).
Hence Xe(λ) ⊆ Xe(ν).

(2) By (1) Xe(λ) ⊆ Xe(λ ∨ ν) and Xe(ν) ⊆ Xe(λ ∨ ν). We have
Xe(ν)∪Xe(λ) ⊆ Xe(λ∨ν). Conversely, If µ ∈ Xe(λ∨ν), then λ∨ν * µ.
Since µ is a prime e-fuzzy filter, λ * µ or ν * µ, and so µ ∈ Xe(λ) or
µ ∈ Xe(ν). Hence µ ∈ Xe(λ)∪Xe(ν). Thus Xe(λ∨ν) = Xe(λ)∪Xe(ν).
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(3) Clearly Xe(λ ∩ ν) ⊆ Xe(λ) ∩ Xe(ν). Again µ ∈ Xe(λ) ∩ Xe(ν),
then λ * µ and ν * µ. Since µ is a prime e-fuzzy filter, we have
λ ∩ µ * µ. Thus µ ∈ Xe(λ ∩ ν) and so Xe(λ) ∩ Xe(ν) ⊆ Xe(λ ∩ ν).
Hence Xe(λ) ∩Xe(ν) = Xe(λ ∩ ν).

Lemma 5.7. Let λ be a fuzzy subset of L. Then Xe(λ) = Xe([λ)).

Proof. Since λ ⊆ [λ), Xe(λ) ⊆ Xe([λ)). Let µ ∈ Xe([λ)), Then
[λ) * µ. This implies λ * µ. Otherwise, if λ ⊆ µ, then [λ) ⊆ µ. Which
is impossible. So that µ ∈ Xe(λ) and so Xe(λ) = Xe([λ)).

Lemma 5.8. Let x, y ∈ L, and α ∈ (0, 1]. Then

(1) ∪x∈L, α∈(0,1]X
e(xα) = Xe,

(2) Xe(xα) ∩Xe(yα) = Xe((x ∨ y)α),
(3) Xe(xα) ∪Xe(yα) = Xe((x ∧ y)α),
(4) Xe(xα) = ∅ ⇔ x ∈ D,

Proof. (1) Clearly ∪x∈L, α∈(0,1]X
e(xα) ⊆ Xe. Let µ ∈ Xe. Then

Imµ = {1, r}, r ∈ [0, 1). This implies there is x ∈ L such that µ(x) = r.
Let us take some α ∈ (0, 1] such that α > r. This implies µ ∈ Xe(xα),
and so µ ∈ ∪x∈L, α∈(0,1]X

e(xα). Thus Xe ⊆ ∪x∈L, α∈(0,1]X
e(xα). Hence

Xe = ∪x∈L, α∈(0,1]X
e(xα).

(2) Let,

µ ∈ Xe(xα) ∩Xe(yα) ⇒ µ ∈ Xe(xα) and µ ∈ Xe(yα)

⇒ xα * µ and yα * µ

⇒ α > µ(x) and α > µ(y)

⇒ α > µ(x) ∨ µ(y) = µ(x ∨ y)

⇒ (x ∨ y)α * µ

⇒ µ ∈ Xe((x ∨ y)α

⇒ Xe(xα) ∩Xe(yα) ⊆ Xe(((x ∨ y)α))
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Conversely, let

µ ∈ Xe((x ∨ y)α) ⇒ (x ∨ y)α * µ

⇒ α > µ(x ∨ y) = µ(x) ∨ µ(y) as µ is prime

⇒ α > µ(x) and α > µ(y)

⇒ xα * µ and yα * µ

⇒ µ ∈ Xe(xα) and µ ∈ Xe(yα)

⇒ µ ∈ Xe(xα) ∩Xe(yα)

⇒ Xe((x ∨ y)α) ⊆ Xe(xα) ∩Xe(yα)

Hence Xe(xα) ∩Xe(yα) = Xe((x ∨ y)α).
(3) The prove is similar to (2).
(4)

Xe(xα) = ∅ ⇔ xα ⊆ µ ∀ µ ∈ Xe

⇔ xα ⊆ ∩µ∈Xeµ = χD

⇔ χD(x) = 1

⇔ x ∈ D.

Lemma 5.9. Let α1, α2 ∈ (0, 1], α = min{α1, α2} and any x, y ∈ L.
Then Xe(xα1) ∩Xe(yα2) = Xe((x ∨ y)α).

Proof. Let µ ∈ Xe(xα1) ∩Xe(yα2). Then xα1 * µ and yα2 * µ. This
implies α1 > µ(x) and α2 > µ(y). Since µ∗ is a prime filter of L and
x, y /∈ µ∗, we have x ∨ y /∈ µ∗ and µ(x) = µ(y) = µ(x ∨ y). This shows
α = α1 ∧ α2 > µ(x ∨ y), Whence (x ∨ y)α * µ and so µ ∈ Xe((x ∨ y)α).
Thus Xe(xα2)∩Xe(yα2) ⊆ Xe((x∨y)α). Conversely, let µ ∈ Xe((x∨y)α).
Then (x∨ y)α * µ. This implies α > µ(x∨ y) = µ(x)∨ µ(y). This show
α1 > µ(x) and α2 > µ(y) and xα2 * µ and yα2 * µ. Then we have
µ ∈ Xe(xα2) ∩Xe(yα2). Hence Xe(xα2) ∩Xe(yα2) = Xe((x ∨ y)α).

Lemma 5.10. The collection T = {Xe(θ) : θ is a fuzzy filter of L} is
a topology on Xe.

Proof. Consider the fuzzy subsets λ1, λ2 of L defined as : λ1(x) = 0
and λ2(x) = 1 for all x ∈ L. Clearly [λ1) and λ2 are fuzzy filters of
L. [λ1) ⊆ µ for all µ ∈ Xe. Thus Xe([λ1)) = ∅. Since each µ ∈ Xe

is non-constant, λ2 * µ for all µ ∈ Xe. Thus Xe(λ2) = Xe. This
implies ∅, Xe ∈ T . Also for any fuzzy filters λ1 and λ2 of L, by Lemma
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5.6(3) we have Xe(λ1) ∩ Xe(λ2) = Xe(λ1 ∩ λ2) . This show that T is
closed under finite intersections. Next, let {λi, i ∈ Ω} be any family
of fuzzy filters of L. Now we prove that ∪i∈ΩX

e(λi) = Xe([∪i∈Ωλi)).
Let µ ∈ Xe([∪i∈Ωλi)), then [∪i∈Ωλi) * µ, which implies that λi *
µ for some i ∈ Ω. Otherwise if λi ⊆ µ for each i ∈ Ω, it will be
true that [∪i∈Ωλi) ⊆ µ. Thus µ ∈ ∪i∈ΩX

e(λi) Whence Xe([∪i∈Ωλi)) ⊆
∪i∈ΩX

e(λi). Clearly ∪i∈ΩX
e(λi) ⊆ Xe([∪i∈Ωλi)). Hence ∪i∈ΩX

e(λi) =
Xe([∪i∈Ωλi)). Therefore, T is closed under arbitrary unions and hence,
it is Topology on Xe.

Definition 5.11. The topological space (Xe, T ) is called the prime
e-fuzzy filter Spectrum of L and it is denoted by F − SpaceF (L).

Theorem 5.12. Let B = {Xe(xα) : x ∈ L, α ∈ (0, 1]}. Then B forms
a base for some topology on τ .

Proof. Clearly by (1) and (2) from Lemma 5.8, it follow that B forms
a base for some topology on Xe.

Theorem 5.13. The space Xe is a T0-space.

Proof. Let µ, θ ∈ Xe such that µ 6= θ. Then either µ * θ or θ * µ.
Without loss of generality, we can assume that µ * θ. Then θ ∈ Xe(µ)
and µ /∈ Xe(µ). Thus Xe is a T0-space.

Theorem 5.14. For any fuzzy filter µ of L, Xe(µ) = Xe(µe).

Proof. Clearly µ ⊆ µe for any fuzzy filter µ of L. Then Xe(µ) ⊆
Xe(µe). Conversely, let θ ∈ Xe(µe). Then µe * θ. Suppose θ /∈ Xe(µ),
then µ ⊆ θ. This implies µe ⊆ θe = θ. Which is impossible. Thus
θ ∈ Xe(µ) and so Xe(µe) ⊆ Xe(µ). Hence Xe(µ) = Xe(µe).

Theorem 5.15. For any fuzzy filter µ of L, Xe(µ) = ∪xα∈µXe(xα).

Theorem 5.16. The lattice FF e(L) is isomorphic with the lattice of
all open sets Xe.

Proof. The lattice of all open sets in Xe is (T ,∩,∪). Define the
mapping f : FF e(L) −→ T by f(µ) = Xe(µ) for all µ ∈ FF e(L).
Let µ, θ ∈ F eF (L). Then f(µ t θ) = f((µ ∨ θ)e) = Xe(µ ∨ θ) =
Xe(µ)∪Xe(θ) = f(µ)∪f(θ), and f(µ∩θ) = Xe(µ∩θ) = Xe(µ)∩Xe(θ) =
f(µ) ∩ f(θ). This shows f is homomorphism. Since Xe(µ) = Xe(µe)
and µe ∈ FF e(L), ∀Xe(µ) ∈ T , there exists µe ∈ FF e(L) such that
f(µe) = Xe(µ). Hence f is onto. Next we prove that f is one to one.
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Let f(µ) = f(θ). Suppose that µ 6= θ, then there exists x ∈ L such
that either µ(x) < θ(x) or θ(x) < µ(x). Without loss of generality, we
can assume that µ(x) < θ(x). Put θ(x) = α, then by Corollary 5.3, we
can find a prime e-fuzzy filter δ of L such that µ ⊆ δ and δ(x) < α.
This implies δ /∈ Xe(µ) and θ * δ. This show that δ /∈ Xe(µ) and
δ ∈ Xe(θ). This is a contradiction f(µ) = f(θ). Thus µ = θ. Hence f is
an isomorphism.

For any fuzzy subset θ of L, Xe(θ) = {µ ∈ Xe : µ * θ} is open set of
Xe and He(θ) = Xe −Xe(θ) is a closed set of Xe. Also every closed set
in Xe is the form of He(θ) for all fuzzy subset of L. Then we have the
following:

Theorem 5.17. The closure of anyA ⊆ Xe is given byA = He(∩µ∈Aµ).

Proof. Let A ⊆ Xe and β ∈ A. Then ∩µ∈Aµ ⊆ β. Thus β ∈ He(β) ⊆
He(∩µ∈Aµ). Therefore, He(∩µ∈Aµ) is a closed set containing A. Let
C be any closed set containing A in Xe . Then C = He(θ) for some
fuzzy subset of θ of L. Since A ⊆ C = He(θ), we have θ ⊆ µ for
all µ ∈ A. Hence θ ⊆ ∩µ∈Aµ . Therefore, He(∩µ∈Aµ) ⊆ He(θ) = C.
Hence He(∩µ∈Aµ) is the smallest closed set containing A. Therefore,
A = He(∩µ∈Aµ).
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