A NOTE ON MULTIPLIERS IN ALMOST DISTRIBUTIVE LATTICES

Kyung Ho Kim

Abstract

The notion of multiplier for an almost distributive lattice is introduced, and some related properties are investigated. Moreover, we introduce a congruence relation ϕ_{a} induced by $a \in L$ on an almost distributive lattice and derive some useful properties of ϕ_{a}.

1. Introduction

The notion of derivation, introduced from the analytic theory, is helpful to the research of structure and property in algebraic system. Recently, analytic and algebraic properties of lattice were widely researched $([4,5])$. Several authors ($[1,6]$) have studied derivations in rings and near-rings after Posner $([7])$ have given the definition of the derivation in ring theory. Bresar ([3]) introduced the generalized derivation in rings and many mathematicians studied on this concept. K. L. Xin, T. Y. Li and $\mathrm{J} . \mathrm{H} . \mathrm{Lu}$ applied the notion of the derivation in ring theory to lattices([9]). In ([7]), a partial multiplier on a commutative semigroup (A, \cdot) has been introduced as a function F from a nonvoid subset D_{F} of A into A such that $F(x) \cdot y=x \cdot F(y)$ for all $x, y \in D_{F}$. In 1980, the concept of an almost distributive lattice was introduced by U. M. Swamy and G. C. Rao ([9]). This class of Almost distributive lattices include most of the existing ring theoretic generalizations of a Boolean

Received February 18, 2018. Revised April 3, 2019. Accepted April 17, 2019.
2010 Mathematics Subject Classification: 16Y30, 06B35, 06B99.
Key words and phrases: Almost distributive lattice, multiplier, isotone, idempotent, $\operatorname{Fix}_{f}(L)$.
(c) The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
algebra on one hand and the class of distributive lattices on the other. The notion of multiplier for an almost distributive lattice is introduced, and some related properties are investigated. Moreover, we introduce a congruence relation ϕ_{a} induced by $a \in L$ on an almost distributive lattice and derive some useful properties of ϕ_{a}.

2. Preliminaries

Throughout this paper, L stands for an almost distributive lattice (L, \vee, \wedge) unless otherwise specified.

Definition 2.1. ([9]) An algebra (L, \wedge, \vee) of type $(2,2)$ is called an Almost Distributive Lattice if it satisfies the following axioms, for any $a, b, c \in L$.
$L_{1}:(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)$.
$L_{2}: a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$.
$L_{3}:(a \vee b) \wedge b=b$.
$L_{4}:(a \vee b) \wedge a=a$.
$L_{5}: a \vee(a \wedge b)=a$.
Definition 2.2. ([9]) Let L be any non-empty set. Define, for any $x, y \in L, x \vee y=x$ and $x \wedge y=y$. Then (L, \vee, \wedge) is an almost distributive lattice on L and it is called a discrete almost distributive lattice

Lemma 2.3. Let L be an almost distributive lattice. For any $a, b \in L$, we have
(1) : $a \wedge a=a$.
(2) : $a \vee a=a$.
(3) : $(a \wedge b) \vee b=b$.
(4) : $a \wedge(a \vee b)=a$.
(5) : $a \vee(b \wedge a)=a$.
(6) : $a \vee b=a$ if and only if $a \wedge b=b$.
(7) : $a \vee b=b$ if and only if $a \wedge b=a$ (see[9]).

Definition 2.4. ([9]) For any $a, b \in L$, we say that a is less than or equal to b and write $a \leq b$, if $a \wedge b=a$, or, equivalently, $a \vee b=b$.

Theorem 2.5. Let L be an almost distributive lattice. For any $a, b, c \in L$, we have
(1) : The relation \leq is a partial ordering on L.
(2) : $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$.
(3) : $(a \vee b) \vee a=a \vee b=a \vee(b \vee a)$.
(4) : $(a \vee b) \wedge c=(b \vee a) \wedge c$.
(5) : The operation \wedge is associative on L.
(6) : $a \wedge b \wedge c=b \wedge a \wedge c$ (see[9]).

Lemma 2.6. Let L be an almost distributive lattice. For any $a, b, c, d \in$ L, the following identities hold.
(1) : $a \wedge b \leq b$ and $a \leq a \vee b$.
(2) : $a \wedge b=b \wedge a$ whenever $a \leq b$.
(3): $[a \vee(b \vee c)] \wedge d=[(a \vee b) \vee c] \wedge d$.
(4) : $a \leq b$ implies $a \wedge c \leq b \wedge c, c \wedge a \leq c \wedge b$ and $c \vee a \leq c \vee b$ (see[9]).

Definition 2.7. ([9]) An element 0 is called a zero element of L if $0 \wedge a=0$ for all $a \in L$.

Lemma 2.8. Let L be an almost distributive lattice. If L has 0 , then for any $a, b \in L$, we have the following identities.
(1) : $a \vee 0=a$ and $0 \vee a=a$.
(2) : $a \wedge 0=0$.
(3) : $a \wedge b=0$ if and only if $b \wedge a=0$ (see[9]).

Definition 2.9. ([9]) A non-empty subset I of L is called an ideal of L if $a \vee b \in I$ and $a \wedge x \in I$ whenever $a, b \in I$ and $x \in L$.

If I is an ideal of L and $a, b \in L$, then $a \wedge b \in I$ if and only if $b \wedge a \in I$.

3. Multipliers in almost distributive lattices

In what follows, let L denote an almost distributive lattice unless otherwise specified.

Definition 3.1. Let L be an almost distributive lattice. A function $f: L \rightarrow L$ is called a multiplier if

$$
f(x \wedge y)=f(x) \wedge y
$$

for all $x, y \in L$.
Lemma 3.2. The identity map on L is a multiplier on L. This is called an identity multiplier on L.

Example 3.3. Let L be an almost distributive lattice and $0 \in L$. A function f defined by $f(x)=0$ for all $x \in L$ is called a zero-multiplier on L.

Example 3.4. In a discrete almost distributive lattice $L=\{0, a, b\}$, if we define a function f by $f(0)=0, f(a)=b, f(b)=a$, then f is a multiplier on L.

Example 3.5. Let $L=\{0, a, b, c\}$ be a set in which " \wedge " and " \vee " is defined by

$$
\begin{array}{c|cccc}
\vee & 0 & a & b & c \\
\hline 0 & 0 & a & b & c \\
a & a & a & b & b \\
b & b & b & b & b \\
c & c & b & b & c
\end{array} \quad \begin{array}{c|cccc}
\wedge & 0 & a & b & c \\
\hline 0 & 0 & 0 & 0 & 0 \\
a & 0 & a & a & 0 \\
b & 0 & a & b & c \\
c & 0 & 0 & c & c
\end{array}
$$

Then it is easy to check that $(L, \wedge, \vee, 0)$ is an almost distributive lattice. Define a map $f: L \rightarrow L$ by

$$
f(x)= \begin{cases}0 & \text { if } x=0, c \\ a & \text { if } x=a, b\end{cases}
$$

Then it is easy to check that f is a multiplier on L.
Lemma 3.6. Let f be a multiplier of L. Then the following conditions hold.
(1) $f(x) \leq x$, for every $x \in L$.
(2) $f(x) \wedge f(y) \leq f(x \wedge y)$, for any $x, y \in L$.
(3) If I is an ideal of L, then $f(I) \subseteq I$.
(4) If L has 0 , then $f(0)=0$.

Proof. (1) Let $x \in L$. Then $f(x)=f(x \wedge x)=f(x) \wedge x$, which implies that $f(x) \leq x$.
(2) Let $x, y \in L$. Then $f(x \wedge y)=f(x) \wedge y$. Since $f(y) \leq y$ for any $y \in L$, we get $f(x) \wedge f(y) \leq f(x) \wedge y=f(x \wedge y)$. Hence $f(x) \wedge f(y) \leq$ $f(x \wedge y)$ for any $x, y \in L$.
(3) Let $a \in I$. Then by (1) above, we have $f(a) \leq a$, and hence $f(a) \in I$. Thus, $f(I) \subseteq I$.
(4) If L has 0 , then by (1) above, $f(0) \leq 0$. Thus $0 \leq f(0) \leq 0$, and hence $f(0)=0$.

Lemma 3.7. Let L be an almost distributive lattice. Define a function f_{a} by $f_{a}(x)=a \wedge x$ for all $x \in L$. Then f_{a} is a multiplier of L. Such a multiplier of L are called a principal multiplier of L.

Proof. Let $x, y \in L$. Then

$$
f_{a}(x \wedge y)=a \wedge(x \wedge y)=(a \wedge x) \wedge y=f_{a}(x) \wedge y
$$

for all $x, y \in L$.
Proposition 3.8. Let L be an almost distributive lattice. Then $f_{a}(x)=a \wedge x$ is an isotone multiplier of L.

Proof. Let $x, y \in L$ be such that $x \leq y$. Then

$$
f_{a}(x)=f_{a}(x \wedge y)=a \wedge x \wedge a \wedge y=f_{a}(x) \wedge f_{a}(y)
$$

which implies that $f_{a}(x) \leq f_{a}(y)$. Hence f_{a} is an isotone multiplier of L.

Lemma 3.9. Let L be an almost distributive lattice and let f be a multiplier of L. If $x \leq y$ and $f(y)=y$, then $f(x)=x$.

Proof. Let $x \leq y$ and $f(y)=y$. Then by Lemma 2.6(2), we have

$$
f(x)=f(x \wedge y)=f(y) \wedge x=y \wedge x=x \wedge y=x
$$

Theorem 3.10. Let L be an almost distributive lattice and let f be a multiplier of L. Then f is an isotone multiplier of L.

Proof. Let $x, y \in L$ be such that $x \leq y$. Then by Lemma 2.9(2) and $f(y) \leq y$, we have

$$
f(x)=f(x \wedge y)=f(y \wedge x)=f(y) \wedge x \leq f(y) \wedge y=f(y)
$$

This implies that $f(x) \leq f(y)$, that is, f is isotone.
Proposition 3.11. Let L be an almost distributive lattice and let f be a multiplier of L. Then $f(x \vee y)=f(x) \vee f(y)$ for any $x, y \in L$.

Proof. Let $x, y \in L$. Then we get $f(x)=f((x \vee y) \wedge x)$ and $f(y)=$ $f((x \vee y) \wedge y)$. Hence

$$
f(x) \vee f(y)=(f(x \vee y) \wedge x) \vee(f(x \vee y) \wedge y))=f(x \vee y) \wedge(x \vee y)
$$

which implies that $f(x \vee y)$.

Theorem 3.12. Let L be an almost distributive lattice and let f be a multiplier of L. Then the following conditions are equivalent.
(1) f is an identity function on L.
(2) $f(x \vee y)=f(x) \vee y$ for any $x, y \in L$.
1.

Proof. (1) \Rightarrow (2) Let f be an identity function on L. Then $f(x \vee y)=$ $x \vee y=f(x) \vee y$ for all $x, y \in L$.
$(2) \Rightarrow(1)$ Let $f(x \vee y)=f(x) \vee y$ for any $x, y \in L$. Putting $y=x$ in this relation, we have $f(x)=f(x) \vee x=x$ for all $x \in L$, which implies that f is an identity map on L. This completes the proof.

Proposition 3.13. Let L be an almost distributive lattice with 0 and f be a multiplier of L. Then $f: L \rightarrow L$ is an identity map if it satisfies $x \vee f(y)=f(x) \vee y$ for all $x, y \in L$.

Proof. Let $x, y \in L$ be such that $x \vee f(y)=f(x) \vee y$. Now $f(x)=$ $0 \vee f(x)=f(0) \vee x=0 \vee x=x$. Thus f is an identity map of L.

In general, every multiplier of L need not be identity. However, in the following theorem, we give a set of conditions which are equivalent to be an identity multiplier of L.

Theorem 3.14. Let L be an almost distributive lattice with 0 . A multiplier f of L is an identity map if and only if the following conditions are satisfied for all $x, y \in L$.
(1) f is idempotent, i.e., $f^{2}(x)=f(x)$.
(2) $f^{2}(x) \vee y=f(x) \vee f(y)$.

Proof. The condition for necessary is trivial. For sufficiency, assume that (1) and (2) hold. Then we get $f(x) \vee y=f^{2}(x) \vee y=f(x) \vee f(y)=$ $f(x \vee y)$ for $x, y \in L$ by Proposition 3.11. Hence by Theorem 3.12, f is an identity multiplier of L.

Let L be an almost distributive lattice and let f_{1} and f_{2} be two selfmaps. We define $f_{1} \circ f_{2}: L \rightarrow L$ by

$$
\left(f_{1} \circ f_{2}\right)(x)=f_{1}\left(f_{2}(x)\right)
$$

for all $x \in L$.
Proposition 3.15. Let L be an almost distributive lattice and f_{1}, f_{2} two multipliers of L. Then $f_{1} \circ f_{2}$ is also a multiplier of L.

Proof. Let L be an almost distributive lattice and let f_{1}, f_{2} be two multipliers of L. Then we have

$$
\begin{aligned}
\left(f_{1} \circ f_{2}\right)(a \wedge b) & =f_{1}\left(f_{2}(a \wedge b)\right)=f_{1}\left(f_{2}(a) \wedge b\right) \\
& =f_{1}\left(f_{2}(a)\right) \wedge b=\left(f_{1} \circ f_{2}\right)(a) \wedge b
\end{aligned}
$$

for any $a, b \in L$. This completes the proof.
Let L be an almost distributive lattice and f_{1}, f_{2} two self-maps. We define $f_{1} \vee f_{2}: L \rightarrow L$ by

$$
\left(f_{1} \vee f_{2}\right)(x)=f_{1}(x) \vee f_{2}(x)
$$

for all $x \in L$.
Proposition 3.16. Let L be an almost distributive lattice and f_{1}, f_{2} two multipliers of L. Then $f_{1} \vee f_{2}$ is also a multiplier of L.

Proof. Let L be an almost distributive lattice and f_{1}, f_{2} two multipliers of L. Then we have

$$
\begin{aligned}
\left(f_{1} \vee f_{2}\right)(a \wedge b) & =f_{1}(a \wedge b) \vee f_{2}(a \wedge b)=\left(f_{1}(a) \wedge b\right) \vee\left(f_{2}(a) \wedge b\right) \\
& =\left(f_{1}(a) \vee f_{2}(a)\right) \wedge b=\left(f_{1} \vee f_{2}\right)(a) \wedge b
\end{aligned}
$$

for any $a, b \in L$. This completes the proof.
Let L_{1} and L_{2} be two almost distributive lattices. Then $L_{1} \times L_{2}$ is also an almost distributive lattice with respect to the point-wise operation given by

$$
(a, b) \wedge(c, d)=(a \wedge c, b \wedge d) \text { and }(a, b) \vee(c, d)=(a \vee c, b \vee d)
$$

for all $a, c \in L_{1}$ and $b, d \in L_{2}$.
Proposition 3.17. Let L_{1} and L_{2} be two almost distributive lattices with 0 . Define a map $f: L_{1} \times L_{2} \rightarrow L_{1} \times L_{2}$ by $f(x, y)=(0, y)$ for all $(x, y) \in L_{1} \times L_{2}$. Then f is a multiplier of $L_{1} \times L_{2}$ with respect to the point-wise operation.

Proof. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in L_{1} \times L_{2}$. The we have

$$
\begin{aligned}
f\left(\left(x_{1}, y_{1}\right) \wedge\left(x_{2}, y_{2}\right)\right) & =f\left(x_{1} \wedge x_{2}, y_{1} \wedge y_{2}\right) \\
& =\left(0, y_{1} \wedge y_{2}\right)=\left(0 \wedge x_{2}, y_{1} \wedge y_{2}\right) \\
& =\left(0, y_{1}\right) \wedge\left(x_{2}, y_{2}\right)=f\left(x_{1}, y_{1}\right) \wedge\left(x_{2}, y_{2}\right) .
\end{aligned}
$$

Therefore f is a multiplier of the direct product $L_{1} \times L_{2}$.

Definition 3.18. Let L be an almost distributive lattice and let f be a multiplier of L. Define a set $\operatorname{Fix}_{f}(L)$ by

$$
\operatorname{Fix}_{f}(L):=\{x \in L \mid f(x)=x\} .
$$

Lemma 3.19. Let f be a multiplier of L. If $x \in \operatorname{Fix}_{f}(L)$ and $y \in L$, then $x \wedge y \in \operatorname{Fix}_{f}(L)$.

Proof. Let $y \in \operatorname{Fix}_{f}(L)$ and $x \in L$. Then we obtain

$$
f(x \wedge y)=f(x) \wedge y=x \wedge y,
$$

which implies that $x \wedge y \in \operatorname{Fix}_{f}(L)$. This completes the proof.
Proposition 3.20. Let L be an almost distributive lattice and let f_{1} and f_{2} be two multipliers of L. Then $f_{1}=f_{2}$ if and only if Fix $f_{1}=$ Fix $_{f_{2}}$.

Proof. If $f_{1}=f_{2}$, then clearly $\operatorname{Fix}_{f_{1}}(L)=\operatorname{Fix}_{f_{2}}(L)$. Suppose that $\operatorname{Fix}_{f_{1}}(L)=\operatorname{Fix}_{f_{2}}(L)$. For any $x \in L, f_{1}\left(f_{1}(x)\right)=f_{1}(x)$, thus $f_{1}(x) \in$ $\operatorname{Fix}_{f_{1}}(L)$. Hence $f_{1}(x) \in \operatorname{Fix}_{f_{2}}(L)$. Therefore, $f_{2}\left(f_{1}(x)\right)=f_{1}(x)$ and hence $f_{2} f_{1}=f_{1}$. Similarly, we obtain $f_{1} f_{2}=f_{2}$. Since f_{1} and f_{2} are isotone by Proposition 3.10 and $f_{1}(x) \leq x$, we have $f_{2}\left(f_{1}(x)\right) \leq f_{2}(x)$ and so, $f_{2} f_{1} \leq f_{2}$. That is, $f_{1} \leq f_{2}$. By symmetry, we get $f_{2}=f_{1}$.

Theorem 3.21. Let L be an almost distributive lattice and let $\mathcal{M}(L)$ be the set of all multipliers on L. Then $(\mathcal{M}(L), \vee, \wedge)$ is an almost distributive lattice, where for any $f_{1}, f_{2} \in \mathcal{M}(L),\left(f_{1} \wedge f_{2}\right)(x)=f_{1}(x) \wedge f_{2}(x)$ and $\left(f_{1} \vee f_{2}\right)(x)=f_{1}(x) \vee f_{2}(x)$ for all $x \in L$.

Proof. Let $f_{1}, f_{2} \in \mathcal{M}(L)$ and $x, y \in L$. Then

$$
\begin{aligned}
\left(f_{1} \wedge f_{2}\right)(x \wedge y) & =f_{1}(x \wedge y) \wedge f_{2}(x \wedge y) \\
& =f_{1}(x) \wedge y \wedge f_{2}(x) \wedge y \\
& =f_{1}(x) \wedge f_{2}(x) \wedge y \\
& =\left(f_{1} \wedge f_{2}\right)(x) \wedge y .
\end{aligned}
$$

This implies that $f_{1} \wedge f_{2}$ is a multiplier on L. Also, we have

$$
\begin{aligned}
\left(f_{1} \vee f_{2}\right)(x \wedge y) & =f_{1}(x \wedge y) \vee f_{2}(x \wedge y) \\
& =\left(f_{1}(x) \wedge y\right) \vee\left(f_{2}(x) \wedge y\right) \\
& =\left(f_{1}(x) \vee f_{2}(x)\right) \wedge y \\
& =\left(f_{1} \vee f_{2}\right)(x) \wedge y .
\end{aligned}
$$

This implies that $f_{1} \vee f_{2}$ is a multiplier on L. Therefore $\mathcal{M}(L)$ is closed under \wedge and \vee, and clearly, it satisfies the properties of an almost distributive lattice.

Theorem 3.22. Let L be an almost distributive lattice and let $\mathcal{F}=$ $\left\{\operatorname{Fix}_{f}(L) \mid f \in \mathcal{M}(L)\right\}$. For any $f_{1}, f_{2} \in \mathcal{M}(L)$, if we define Fix $f_{1}(L) \vee$ $\operatorname{Fix}_{f_{2}}(L)=\operatorname{Fix}_{f_{1} \vee f_{2}}(L)$ and Fix $f_{f_{1}}(L) \wedge$ Fix $_{f_{2}}(L)=\operatorname{Fix}_{f_{1} \wedge f_{2}}(L)$, then $(\mathcal{F}, \vee, \wedge)$ is an almost distributive lattice and it is isomorphic to $\mathcal{M}(L)$.

Proof. Let $\mathcal{F}=\left\{\operatorname{Fix}_{f}(L) \mid f \in \mathcal{M}(L)\right\}$. Define Fix $_{f_{1}}(L) \vee$ Fix $_{f_{2}}(L)=$ $\operatorname{Fix}_{f_{1} \vee f_{2}}(L)$ and $\operatorname{Fix}_{f_{1}}(L) \wedge \operatorname{Fix}_{f_{2}}(L)=\operatorname{Fix}_{f_{1} \wedge f_{2}}(L)$ for any $f_{1}, f_{2} \in \mathcal{M}$. Then by Theorem 3.21, \mathcal{F} is closed under \wedge and \vee. Since $(\mathcal{M}, \vee, \wedge)$ is an almost distributive lattice, we can very that $(\mathcal{F}, \vee, \wedge)$ is an almost distributive lattice. Now define $\phi: \mathcal{M}(L) \rightarrow \mathcal{F}$ by $\phi(f)=\operatorname{Fix}_{f}(L)$. By Theorem 3.20, ϕ is well-defined and injective. Clearly, ϕ is surjective. Also, for any $f_{1}, f_{2} \in \mathcal{M}$, we have $\phi\left(f_{1} \wedge f_{2}\right)=\operatorname{Fix}_{f_{1} \wedge f_{2}}(L)=\operatorname{Fix}_{f_{1}}(L) \wedge$ $\operatorname{Fix}_{f_{2}}(L)=\phi\left(f_{1}\right) \wedge \phi\left(f_{2}\right)$ and $\phi\left(f_{1} \vee f_{2}\right)=\operatorname{Fix}_{f_{1} \vee f_{2}}(L)=\operatorname{Fix}_{f_{1}}(L) \vee$ Fix $_{f_{2}}(L)=\phi\left(f_{1}\right) \vee \phi\left(f_{2}\right)$. Hence ϕ is an isomorphism.

Let us recall from Proposition 3.20 that the composition of two multipliers f and g of an almost distributive lattice L is a multiplier of L where $(f \circ g)(x)=f(g(x))$ for all $x \in L$.

Theorem 3.23. Let f and g be two idempotent multipliers of L such that $f \circ g=g \circ f$. Then the following conditions are equivalent.
(1) $f=g$.
(2) $f(L)=g(L)$.
(3) $\operatorname{Fix}_{f}(L)=\operatorname{Fix}(L)$.

Proof. (1) \Rightarrow (2): It is obvious.
$(2) \Rightarrow(3)$: Assume that $f(L)=g(L)$. Let $x \in \operatorname{Fix}_{f}(L)$. Then $x=$ $f(x) \in f(L)=g(L)$. Hence $x=g(y)$ for some $y \in L$. Now $g(x)=$ $g(g(y))=g^{2}(y)=g(y)=x$. Thus $x \in$ Fix $_{g}(L)$. Therefore, Fix $f_{f}(L) \subseteq$ $\operatorname{Fix}_{g}(L)$. Similarly, we can obtain $\operatorname{Fix}_{g}(L) \subseteq \operatorname{Fix}_{f}(L)$. Thus $\operatorname{Fix}_{f}(L)=$ $\operatorname{Fix}_{g}(L)$.
$(3) \Rightarrow(1)$: Assume that Fix $_{f}(L)=F i x_{g}(L)$. Let $x \in L$. Since $f(x) \in$ $\operatorname{Fix}_{f}(L)=F i x_{g}(L)$, we have $g(f(x))=f(x)$. Also, we obtain $g(x) \in$ $\operatorname{Fix}_{g}(L)=\operatorname{Fix}_{f}(L)$. Hence we get $f(g(x))=g(x)$. Thus we have

$$
f(x)=g(f(x))=(g \circ f)(x)=(f \circ g)(x)=f(g(x))=g(x) .
$$

Therefore, f and g are equal in the sense of mappings.

Definition 3.24. Let $(L, \vee, \wedge, 0)$ be an almost distributive lattice. For any $a \in L$, define $\phi_{a}=\left\{(x, y) \in L \times L \mid f_{a}(x)=f_{a}(y)\right\}$ where f_{a} is a principal multiplier induced by $a \in L$.

Proposition 3.25. Let L be an almost distributive lattice. Then for any $a \in L, \phi_{a}$ is a congruence relation on L.

Proof. Clearly, ϕ_{a} is an equivalence relation on L. Now, let $(x, y),(p, q) \in$ ϕ_{a}. Then $a \wedge x=a \wedge y$ and $a \wedge p=a \wedge q$. Now $a \wedge x \wedge p=a \wedge x \wedge a \wedge p=$ $a \wedge y \wedge a \wedge q=a \wedge y \wedge q$ and $a \wedge(x \vee p)=(a \wedge x) \vee(a \wedge p)=(a \wedge y) \vee(a \wedge q)=$ $a \wedge(y \vee q)$. Therefore, $(x \wedge p, y \wedge q),(x \vee p, y \vee q) \in \phi_{a}$. Hence ϕ_{a} is a congruence relation on L.

Proposition 3.26. Let L be an almost distributive lattice. Then the following identities hold for any $a, b \in L$.
(1) $\phi_{a \wedge b}=\phi_{b \wedge a}$.
(2) $\phi_{a \vee b}=\phi_{b \vee a}$.
(3) $\phi_{a} \cap \phi_{b}=\phi_{a \vee b}$.

Proof. (1) and (2) Since $a \wedge b \wedge x=b \wedge a \wedge x$ and $(a \vee b) \wedge x=(b \vee a) \wedge x$, we obtain $\phi_{a \wedge b}=\phi_{b \wedge a}$ and $\phi_{a \vee b}=\phi_{b \vee a}$.
(3) Again, we obtain

$$
\begin{gathered}
(x, y) \in \phi_{a} \cap \phi_{b} \Leftrightarrow a \wedge x=a \wedge y \text { and } b \wedge x=b \wedge y \\
\Leftrightarrow(a \vee b) \wedge x=(a \vee b) \wedge y \Leftrightarrow(x, y) \in \phi_{a \vee b},
\end{gathered}
$$

which implies that $\phi_{a \vee b}=\phi_{a} \cap \phi_{b}$.
Theorem 3.27. Let L be an almost distributive lattice and let $\mathcal{M}(L)$ be the set of all multipliers on L. Then the set of all principal multipliers $\mathcal{P}(L)=\left\{f_{a} \mid a \in L\right\}$ is a distributive lattice with the following operations

$$
f_{a} \vee f_{b}=f_{a \vee b} \text { and } f_{a} \wedge f_{b}=f_{a \wedge b}
$$

for all $a, b \in L$.
Proof. Let $a, b \in L$. Then
$\left.\left(f_{a} \vee f_{b}\right)\right)(x)=f_{a}(x) \vee f_{b}(x)=(a \wedge x) \vee(b \wedge x)=(a \vee b) \wedge x=f_{a \vee b}(x)$
for any $x \in L$, which implies that $f_{a} \wedge f_{b}=f_{a \vee b} \in \mathcal{P}(L)$. Also, $\left.\left(f_{a} \wedge f_{b}\right)\right)(x)=f_{a}(x) \wedge f_{b}(x)=(a \wedge x) \wedge(b \wedge x)=(a \wedge b) \wedge x=f_{a \wedge b}(x)$ for any $x \in L$, which implies that $f_{a} \wedge f_{b}=f_{a \wedge b} \in \mathcal{P}(L)$. Hence $\mathcal{P}(L)$ is closed under \vee and \wedge, and so $\mathcal{P}(L)$ is a sub-almost distributive lattice
of L. Next, for any $x \in L, f_{a \wedge b}(x)=a \wedge b \wedge x=b \wedge a \wedge x=f_{b \wedge a}(x)$. Thus $f_{a \wedge b}=f_{b \wedge a}$. That is, $f_{a} \wedge f_{b}=f_{b} \wedge f_{a}$. Hence $\mathcal{P}(L)$ is a distributive lattice.

References

[1] H. E. Bell, L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar 53 (3-4) (1989), 339-346.
[2] G. Birkhoof, Lattice Theory, American Mathematical Society, New York, 1940.
[3] M. Bresar, On the distance of the composition of the derivations to the generalized derivations, Glasgow Math. J. 33 (1) (1991), 89-93.
[4] A. Honda and M. Grabisch, Entropy of capacities on lattices and set systems, Information Science 176 (2006), 3472-3489.
[5] F. Karacal, On the direct decomposability of strong negations and simplication operations on product lattices, Information Science 176 (2006), 3011-3025.
[6] K. Kaya, Prime rings with a derivations, Bull. Master. Sci.Eng 16 (1987), 63-71.
[7] L. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, 1971.
[8] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc 8 (1957), 1093-1100.
[9] U. M. Swamy and G. C. Rao, Almost Distributive lattices, J. Aust. Math. Soc.(Series A) 31 (1981), 77-91.
[10] X. L. Xin, T. Y. Li and J. H. Lu, On the derivations of lattices, Information Sci., 178 (2) (2008), 307-316.

Kyung Ho Kim

Department of Mathematics
Korea National University of Transportation
Chungju 27469, Korea
E-mail: ghkim@ut.ac.kr

