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A NOTE ON MULTIPLIERS IN ALMOST

DISTRIBUTIVE LATTICES

Kyung Ho Kim

Abstract. The notion of multiplier for an almost distributive lat-
tice is introduced, and some related properties are investigated.
Moreover, we introduce a congruence relation φa induced by a ∈ L
on an almost distributive lattice and derive some useful properties
of φa.

1. Introduction

The notion of derivation, introduced from the analytic theory, is help-
ful to the research of structure and property in algebraic system. Re-
cently, analytic and algebraic properties of lattice were widely researched
([4, 5]). Several authors ([1, 6]) have studied derivations in rings and
near-rings after Posner ([7]) have given the definition of the derivation in
ring theory. Bresar ([3]) introduced the generalized derivation in rings
and many mathematicians studied on this concept. K. L. Xin, T. Y.
Li and J. H. Lu applied the notion of the derivation in ring theory to
lattices([9]). In ([7]), a partial multiplier on a commutative semigroup
(A, ·) has been introduced as a function F from a nonvoid subset DF

of A into A such that F (x) · y = x · F (y) for all x, y ∈ DF . In 1980,
the concept of an almost distributive lattice was introduced by U. M.
Swamy and G. C. Rao ([9]). This class of Almost distributive lattices
include most of the existing ring theoretic generalizations of a Boolean
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algebra on one hand and the class of distributive lattices on the other.
The notion of multiplier for an almost distributive lattice is introduced,
and some related properties are investigated. Moreover, we introduce
a congruence relation φa induced by a ∈ L on an almost distributive
lattice and derive some useful properties of φa.

2. Preliminaries

Throughout this paper, L stands for an almost distributive lattice
(L,∨,∧) unless otherwise specified.

Definition 2.1. ([9]) An algebra (L,∧,∨) of type (2, 2) is called an
Almost Distributive Lattice if it satisfies the following axioms, for any
a, b, c ∈ L.
L1 : (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c).
L2 : a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
L3 : (a ∨ b) ∧ b = b.
L4 : (a ∨ b) ∧ a = a.
L5 : a ∨ (a ∧ b) = a.

Definition 2.2. ([9]) Let L be any non-empty set. Define, for any
x, y ∈ L, x∨y = x and x∧y = y. Then (L,∨,∧) is an almost distributive
lattice on L and it is called a discrete almost distributive lattice

Lemma 2.3. Let L be an almost distributive lattice. For any a, b ∈ L,
we have

(1) : a ∧ a = a.
(2) : a ∨ a = a.
(3) : (a ∧ b) ∨ b = b.
(4) : a ∧ (a ∨ b) = a.
(5) : a ∨ (b ∧ a) = a.
(6) : a ∨ b = a if and only if a ∧ b = b.
(7) : a ∨ b = b if and only if a ∧ b = a (see[9]).

Definition 2.4. ([9]) For any a, b ∈ L, we say that a is less than or
equal to b and write a ≤ b, if a ∧ b = a, or, equivalently, a ∨ b = b.

Theorem 2.5. Let L be an almost distributive lattice. For any
a, b, c ∈ L, we have

(1) : The relation ≤ is a partial ordering on L.
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(2) : a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).
(3) : (a ∨ b) ∨ a = a ∨ b = a ∨ (b ∨ a).
(4) : (a ∨ b) ∧ c = (b ∨ a) ∧ c.
(5) : The operation ∧ is associative on L.
(6) : a ∧ b ∧ c = b ∧ a ∧ c (see[9]).

Lemma 2.6. Let L be an almost distributive lattice. For any a, b, c, d ∈
L, the following identities hold.

(1) : a ∧ b ≤ b and a ≤ a ∨ b.
(2) : a ∧ b = b ∧ a whenever a ≤ b.
(3) : [a ∨ (b ∨ c)] ∧ d = [(a ∨ b) ∨ c] ∧ d.
(4) : a ≤ b implies a∧ c ≤ b∧ c, c∧ a ≤ c∧ b and c∨ a ≤ c∨ b (see[9]).

Definition 2.7. ([9]) An element 0 is called a zero element of L if
0 ∧ a = 0 for all a ∈ L.

Lemma 2.8. Let L be an almost distributive lattice. If L has 0, then
for any a, b ∈ L, we have the following identities.

(1) : a ∨ 0 = a and 0 ∨ a = a.
(2) : a ∧ 0 = 0.
(3) : a ∧ b = 0 if and only if b ∧ a = 0 (see[9]).

Definition 2.9. ([9]) A non-empty subset I of L is called an ideal of
L if a ∨ b ∈ I and a ∧ x ∈ I whenever a, b ∈ I and x ∈ L.

If I is an ideal of L and a, b ∈ L, then a∧b ∈ I if and only if b∧a ∈ I.

3. Multipliers in almost distributive lattices

In what follows, let L denote an almost distributive lattice unless
otherwise specified.

Definition 3.1. Let L be an almost distributive lattice. A function
f : L→ L is called a multiplier if

f(x ∧ y) = f(x) ∧ y

for all x, y ∈ L.

Lemma 3.2. The identity map on L is a multiplier on L. This is called
an identity multiplier on L.
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Example 3.3. Let L be an almost distributive lattice and 0 ∈ L. A
function f defined by f(x) = 0 for all x ∈ L is called a zero-multiplier
on L.

Example 3.4. In a discrete almost distributive lattice L = {0, a, b},
if we define a function f by f(0) = 0, f(a) = b, f(b) = a, then f is a
multiplier on L.

Example 3.5. Let L = {0, a, b, c} be a set in which “∧” and “ ∨ ” is
defined by

∨ 0 a b c
0 0 a b c
a a a b b
b b b b b
c c b b c

∧ 0 a b c
0 0 0 0 0
a 0 a a 0
b 0 a b c
c 0 0 c c

Then it is easy to check that (L,∧,∨, 0) is an almost distributive lattice.
Define a map f : L→ L by

f(x) =

{
0 if x = 0, c

a if x = a, b

Then it is easy to check that f is a multiplier on L.

Lemma 3.6. Let f be a multiplier of L. Then the following conditions
hold.

(1) f(x) ≤ x, for every x ∈ L.
(2) f(x) ∧ f(y) ≤ f(x ∧ y), for any x, y ∈ L.
(3) If I is an ideal of L, then f(I) ⊆ I.
(4) If L has 0, then f(0) = 0.

Proof. (1) Let x ∈ L. Then f(x) = f(x∧x) = f(x)∧x, which implies
that f(x) ≤ x.

(2) Let x, y ∈ L. Then f(x ∧ y) = f(x) ∧ y. Since f(y) ≤ y for any
y ∈ L, we get f(x) ∧ f(y) ≤ f(x) ∧ y = f(x ∧ y). Hence f(x) ∧ f(y) ≤
f(x ∧ y) for any x, y ∈ L.

(3) Let a ∈ I. Then by (1) above, we have f(a) ≤ a, and hence
f(a) ∈ I. Thus, f(I) ⊆ I.

(4) If L has 0, then by (1) above, f(0) ≤ 0. Thus 0 ≤ f(0) ≤ 0, and
hence f(0) = 0.
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Lemma 3.7. Let L be an almost distributive lattice. Define a function
fa by fa(x) = a ∧ x for all x ∈ L. Then fa is a multiplier of L. Such a
multiplier of L are called a principal multiplier of L.

Proof. Let x, y ∈ L. Then

fa(x ∧ y) = a ∧ (x ∧ y) = (a ∧ x) ∧ y = fa(x) ∧ y
for all x, y ∈ L.

Proposition 3.8. Let L be an almost distributive lattice. Then
fa(x) = a ∧ x is an isotone multiplier of L.

Proof. Let x, y ∈ L be such that x ≤ y. Then

fa(x) = fa(x ∧ y) = a ∧ x ∧ a ∧ y = fa(x) ∧ fa(y),

which implies that fa(x) ≤ fa(y). Hence fa is an isotone multiplier of
L.

Lemma 3.9. Let L be an almost distributive lattice and let f be a
multiplier of L. If x ≤ y and f(y) = y, then f(x) = x.

Proof. Let x ≤ y and f(y) = y. Then by Lemma 2.6(2), we have

f(x) = f(x ∧ y) = f(y) ∧ x = y ∧ x = x ∧ y = x.

Theorem 3.10. Let L be an almost distributive lattice and let f be
a multiplier of L. Then f is an isotone multiplier of L.

Proof. Let x, y ∈ L be such that x ≤ y. Then by Lemma 2.9(2) and
f(y) ≤ y, we have

f(x) = f(x ∧ y) = f(y ∧ x) = f(y) ∧ x ≤ f(y) ∧ y = f(y).

This implies that f(x) ≤ f(y), that is, f is isotone.

Proposition 3.11. Let L be an almost distributive lattice and let f
be a multiplier of L. Then f(x ∨ y) = f(x) ∨ f(y) for any x, y ∈ L.

Proof. Let x, y ∈ L. Then we get f(x) = f((x ∨ y) ∧ x) and f(y) =
f((x ∨ y) ∧ y). Hence

f(x) ∨ f(y) = (f(x ∨ y) ∧ x) ∨ (f(x ∨ y) ∧ y)) = f(x ∨ y) ∧ (x ∨ y),

which implies that f(x ∨ y).
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Theorem 3.12. Let L be an almost distributive lattice and let f be
a multiplier of L. Then the following conditions are equivalent.

(1) f is an identity function on L.
(2) f(x ∨ y) = f(x) ∨ y for any x, y ∈ L.
1.

Proof. (1)⇒ (2) Let f be an identity function on L. Then f(x∨ y) =
x ∨ y = f(x) ∨ y for all x, y ∈ L.

(2) ⇒ (1) Let f(x ∨ y) = f(x) ∨ y for any x, y ∈ L. Putting y = x in
this relation, we have f(x) = f(x) ∨ x = x for all x ∈ L, which implies
that f is an identity map on L. This completes the proof.

Proposition 3.13. Let L be an almost distributive lattice with 0
and f be a multiplier of L. Then f : L → L is an identity map if it
satisfies x ∨ f(y) = f(x) ∨ y for all x, y ∈ L.

Proof. Let x, y ∈ L be such that x ∨ f(y) = f(x) ∨ y. Now f(x) =
0 ∨ f(x) = f(0) ∨ x = 0 ∨ x = x. Thus f is an identity map of L.

In general, every multiplier of L need not be identity. However, in
the following theorem, we give a set of conditions which are equivalent
to be an identity multiplier of L.

Theorem 3.14. Let L be an almost distributive lattice with 0. A
multiplier f of L is an identity map if and only if the following conditions
are satisfied for all x, y ∈ L.

(1) f is idempotent, i.e., f 2(x) = f(x).
(2) f 2(x) ∨ y = f(x) ∨ f(y).

Proof. The condition for necessary is trivial. For sufficiency, assume
that (1) and (2) hold. Then we get f(x)∨y = f 2(x)∨y = f(x)∨f(y) =
f(x ∨ y) for x, y ∈ L by Proposition 3.11. Hence by Theorem 3.12, f is
an identity multiplier of L.

Let L be an almost distributive lattice and let f1 and f2 be two self-
maps. We define f1 ◦ f2 : L→ L by

(f1 ◦ f2)(x) = f1(f2(x))

for all x ∈ L.

Proposition 3.15. Let L be an almost distributive lattice and f1, f2
two multipliers of L. Then f1 ◦ f2 is also a multiplier of L.
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Proof. Let L be an almost distributive lattice and let f1, f2 be two
multipliers of L. Then we have

(f1 ◦ f2)(a ∧ b) = f1(f2(a ∧ b)) = f1(f2(a) ∧ b)
= f1(f2(a)) ∧ b = (f1 ◦ f2)(a) ∧ b

for any a, b ∈ L. This completes the proof.

Let L be an almost distributive lattice and f1, f2 two self-maps. We
define f1 ∨ f2 : L→ L by

(f1 ∨ f2)(x) = f1(x) ∨ f2(x)

for all x ∈ L.

Proposition 3.16. Let L be an almost distributive lattice and f1, f2
two multipliers of L. Then f1 ∨ f2 is also a multiplier of L.

Proof. Let L be an almost distributive lattice and f1, f2 two multipli-
ers of L. Then we have

(f1 ∨ f2)(a ∧ b) = f1(a ∧ b) ∨ f2(a ∧ b) = (f1(a) ∧ b) ∨ (f2(a) ∧ b)
= (f1(a) ∨ f2(a)) ∧ b = (f1 ∨ f2)(a) ∧ b

for any a, b ∈ L. This completes the proof.

Let L1 and L2 be two almost distributive lattices. Then L1×L2 is also
an almost distributive lattice with respect to the point-wise operation
given by

(a, b) ∧ (c, d) = (a ∧ c, b ∧ d) and (a, b) ∨ (c, d) = (a ∨ c, b ∨ d)

for all a, c ∈ L1 and b, d ∈ L2.

Proposition 3.17. Let L1 and L2 be two almost distributive lattices
with 0. Define a map f : L1 × L2 → L1 × L2 by f(x, y) = (0, y) for all
(x, y) ∈ L1 × L2. Then f is a multiplier of L1 × L2 with respect to the
point-wise operation.

Proof. Let (x1, y1), (x2, y2) ∈ L1 × L2. The we have

f((x1, y1) ∧ (x2, y2)) = f(x1 ∧ x2, y1 ∧ y2)
= (0, y1 ∧ y2) = (0 ∧ x2, y1 ∧ y2)
= (0, y1) ∧ (x2, y2) = f(x1, y1) ∧ (x2, y2).

Therefore f is a multiplier of the direct product L1 × L2.



432 K. H. Kim

Definition 3.18. Let L be an almost distributive lattice and let f
be a multiplier of L. Define a set Fixf (L) by

Fixf (L) := {x ∈ L | f(x) = x}.

Lemma 3.19. Let f be a multiplier of L. If x ∈ Fixf (L) and y ∈ L,
then x ∧ y ∈ Fixf (L).

Proof. Let y ∈ Fixf (L) and x ∈ L. Then we obtain

f(x ∧ y) = f(x) ∧ y = x ∧ y,

which implies that x ∧ y ∈ Fixf (L). This completes the proof.

Proposition 3.20. Let L be an almost distributive lattice and let f1
and f2 be two multipliers of L. Then f1 = f2 if and only if Fixf1 = Fixf2 .

Proof. If f1 = f2, then clearly Fixf1(L) = Fixf2(L). Suppose that
Fixf1(L) = Fixf2(L). For any x ∈ L, f1(f1(x)) = f1(x), thus f1(x) ∈
Fixf1(L). Hence f1(x) ∈ Fixf2(L). Therefore, f2(f1(x)) = f1(x) and
hence f2f1 = f1. Similarly, we obtain f1f2 = f2. Since f1 and f2 are
isotone by Proposition 3.10 and f1(x) ≤ x, we have f2(f1(x)) ≤ f2(x)
and so, f2f1 ≤ f2. That is, f1 ≤ f2. By symmetry, we get f2 = f1.

Theorem 3.21. Let L be an almost distributive lattice and letM(L)
be the set of all multipliers on L. Then (M(L),∨,∧) is an almost dis-
tributive lattice, where for any f1, f2 ∈M(L), (f1∧f2)(x) = f1(x)∧f2(x)
and (f1 ∨ f2)(x) = f1(x) ∨ f2(x) for all x ∈ L.

Proof. Let f1, f2 ∈M(L) and x, y ∈ L. Then

(f1 ∧ f2)(x ∧ y) = f1(x ∧ y) ∧ f2(x ∧ y)

= f1(x) ∧ y ∧ f2(x) ∧ y
= f1(x) ∧ f2(x) ∧ y
= (f1 ∧ f2)(x) ∧ y.

This implies that f1 ∧ f2 is a multiplier on L. Also, we have

(f1 ∨ f2)(x ∧ y) = f1(x ∧ y) ∨ f2(x ∧ y)

= (f1(x) ∧ y) ∨ (f2(x) ∧ y)

= (f1(x) ∨ f2(x)) ∧ y
= (f1 ∨ f2)(x) ∧ y.
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This implies that f1 ∨ f2 is a multiplier on L. ThereforeM(L) is closed
under ∧ and ∨, and clearly, it satisfies the properties of an almost dis-
tributive lattice.

Theorem 3.22. Let L be an almost distributive lattice and let F =
{Fixf (L) | f ∈ M(L)}. For any f1, f2 ∈ M(L), if we define Fixf1(L) ∨
Fixf2(L) = Fixf1∨f2(L) and Fixf1(L) ∧ Fixf2(L) = Fixf1∧f2(L), then
(F ,∨,∧) is an almost distributive lattice and it is isomorphic toM(L).

Proof. Let F = {Fixf (L) | f ∈M(L)}. Define Fixf1(L)∨Fixf2(L) =
Fixf1∨f2(L) and Fixf1(L)∧Fixf2(L) = Fixf1∧f2(L) for any f1, f2 ∈M.
Then by Theorem 3.21, F is closed under ∧ and ∨. Since (M,∨,∧) is
an almost distributive lattice, we can very that (F ,∨,∧) is an almost
distributive lattice. Now define φ :M(L)→ F by φ(f) = Fixf (L). By
Theorem 3.20, φ is well-defined and injective. Clearly, φ is surjective.
Also, for any f1, f2 ∈M, we have φ(f1∧f2) = Fixf1∧f2(L) = Fixf1(L)∧
Fixf2(L) = φ(f1) ∧ φ(f2) and φ(f1 ∨ f2) = Fixf1∨f2(L) = Fixf1(L) ∨
Fixf2(L) = φ(f1) ∨ φ(f2). Hence φ is an isomorphism.

Let us recall from Proposition 3.20 that the composition of two mul-
tipliers f and g of an almost distributive lattice L is a multiplier of L
where (f ◦ g)(x) = f(g(x)) for all x ∈ L.

Theorem 3.23. Let f and g be two idempotent multipliers of L such
that f ◦ g = g ◦ f. Then the following conditions are equivalent.

(1) f = g.
(2) f(L) = g(L).
(3) Fixf (L) = Fixg(L).

Proof. (1)⇒ (2): It is obvious.
(2) ⇒ (3): Assume that f(L) = g(L). Let x ∈ Fixf (L). Then x =

f(x) ∈ f(L) = g(L). Hence x = g(y) for some y ∈ L. Now g(x) =
g(g(y)) = g2(y) = g(y) = x. Thus x ∈ Fixg(L). Therefore, Fixf (L) ⊆
Fixg(L). Similarly, we can obtain Fixg(L) ⊆ Fixf (L). Thus Fixf (L) =
Fixg(L).

(3)⇒ (1): Assume that Fixf (L) = Fixg(L). Let x ∈ L. Since f(x) ∈
Fixf (L) = Fixg(L), we have g(f(x)) = f(x). Also, we obtain g(x) ∈
Fixg(L) = Fixf (L). Hence we get f(g(x)) = g(x). Thus we have

f(x) = g(f(x)) = (g ◦ f)(x) = (f ◦ g)(x) = f(g(x)) = g(x).

Therefore, f and g are equal in the sense of mappings.
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Definition 3.24. Let (L,∨,∧, 0) be an almost distributive lattice.
For any a ∈ L, define φa = {(x, y) ∈ L× L | fa(x) = fa(y)} where fa is
a principal multiplier induced by a ∈ L.

Proposition 3.25. Let L be an almost distributive lattice. Then for
any a ∈ L, φa is a congruence relation on L.

Proof. Clearly, φa is an equivalence relation on L.Now, let (x, y), (p, q) ∈
φa. Then a∧x = a∧ y and a∧ p = a∧ q. Now a∧x∧ p = a∧x∧ a∧ p =
a∧y∧a∧q = a∧y∧q and a∧(x∨p) = (a∧x)∨(a∧p) = (a∧y)∨(a∧q) =
a ∧ (y ∨ q). Therefore, (x ∧ p, y ∧ q), (x ∨ p, y ∨ q) ∈ φa. Hence φa is a
congruence relation on L.

Proposition 3.26. Let L be an almost distributive lattice. Then the
following identities hold for any a, b ∈ L.

(1) φa∧b = φb∧a.
(2) φa∨b = φb∨a.
(3) φa ∩ φb = φa∨b.

Proof. (1) and (2) Since a∧b∧x = b∧a∧x and (a∨b)∧x = (b∨a)∧x,
we obtain φa∧b = φb∧a and φa∨b = φb∨a.

(3) Again, we obtain

(x, y) ∈ φa ∩ φb ⇔ a ∧ x = a ∧ y and b ∧ x = b ∧ y
⇔ (a ∨ b) ∧ x = (a ∨ b) ∧ y ⇔ (x, y) ∈ φa∨b,

which implies that φa∨b = φa ∩ φb.

Theorem 3.27. Let L be an almost distributive lattice and letM(L)
be the set of all multipliers on L. Then the set of all principal multipli-
ers P(L) = {fa | a ∈ L} is a distributive lattice with the following
operations

fa ∨ fb = fa∨b and fa ∧ fb = fa∧b

for all a, b ∈ L.

Proof. Let a, b ∈ L. Then

(fa ∨ fb))(x) = fa(x) ∨ fb(x) = (a ∧ x) ∨ (b ∧ x) = (a ∨ b) ∧ x = fa∨b(x)

for any x ∈ L, which implies that fa ∧ fb = fa∨b ∈ P(L). Also,

(fa ∧ fb))(x) = fa(x) ∧ fb(x) = (a ∧ x) ∧ (b ∧ x) = (a ∧ b) ∧ x = fa∧b(x)

for any x ∈ L, which implies that fa ∧ fb = fa∧b ∈ P(L). Hence P(L) is
closed under ∨ and ∧, and so P(L) is a sub-almost distributive lattice
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of L. Next, for any x ∈ L, fa∧b(x) = a ∧ b ∧ x = b ∧ a ∧ x = fb∧a(x).
Thus fa∧b = fb∧a. That is, fa∧ fb = fb∧ fa. Hence P(L) is a distributive
lattice.
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