CHARACTERIZING FUNCTIONS FIXED BY A WEIGHTED BEREZIN TRANSFORM IN THE BIDISC

Jaesung Lee

Abstract

For $c>-1$, let ν_{c} denote a weighted radial measure on \mathbb{C} normalized so that $\nu_{c}(D)=1$. For $c_{1}, c_{2}>-1$ and $f \in$ $L^{1}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$, we define the weighted Berezin transform $B_{c_{1}, c_{2}} f$ on D^{2} by $$
\left(B_{c_{1}, c_{2}}\right) f(z, w)=\int_{D} \int_{D} f\left(\varphi_{z}(x), \varphi_{w}(y)\right) d \nu_{c_{1}}(x) d \nu_{c_{2}}(y) .
$$

This paper is about the space $M_{c_{1}, c_{2}}^{p}$ of function $f \in L^{p}\left(D^{2}, \nu_{c_{1}} \times\right.$ $\nu_{c_{2}}$) satisfying $B_{c_{1}, c_{2}} f=f$ for $1 \leq p<\infty$. We find the identity operator on $M_{c_{1}, c_{2}}^{p}$ by using invariant Laplacians and we characterize some special type of functions in $M_{c_{1}, c_{2}}^{p}$.

1. Introduction

Let D be the unit dics of \mathbb{C} and ν be the Lebesgue measure on \mathbb{C} normalized to $\nu(D)=1$. For $c>-1$, we define a measure ν_{c} by $d \nu_{c}(z)=$ $(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} d \nu(z)$ so that $\nu_{c}(D)=1$. If $u \in L^{1}\left(D, \nu_{c}\right)$ and $z \in D$, we define $T_{c} u$ the weighted Berezin transform of u by

$$
\left(T_{c} u\right)(z)=\int_{D}\left(u \circ \varphi_{z}\right) d \nu_{c},
$$

where $\varphi_{a} \in \operatorname{Aut}(D)$ is defined by $\varphi_{a}(z)=\frac{a-z}{1-\bar{a} \bar{z}}$.
Received March 1, 2018. Revised June 3, 2019. Accepted June 5, 2019.
2010 Mathematics Subject Classification: 32A70, 47G10.
Key words and phrases: weighted Berezin transform, invariant Laplacian, joint eigenfunction.
(c) The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

For $c_{1}, c_{2}>-1$ and $f \in L^{1}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$, we define the weighted Berezin transform $B_{c_{1}, c_{2}} f$ on D^{2} by

$$
\left(B_{c_{1}, c_{2}}\right) f(z, w)=\int_{D} \int_{D} f\left(\varphi_{z}(x), \varphi_{w}(y)\right) d \nu_{c_{1}}(x) d \nu_{c_{2}}(y)
$$

A function $f \in C^{2}(D)$ with $\Delta_{1} f=\Delta_{2} f=0$ (i,e, harmonic in each variable) is called 2 -harmonic. If $f \in L^{1}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$ is 2 -harmonic, then we can easily see that $B_{c_{1}, c_{2}} f=f$ for every $c_{1}, c_{2}>-1$. Conversely, Furstenberg ([3]) proved that a function $f \in L^{\infty}\left(D^{2}\right)$ satisfying $B_{c_{1}, c_{2}} f=$ f for some $c_{1}, c_{2}>-1$ has to be 2 -harmonic, whose complete analytic proof is given in [5]. The author([4]) proved that for every $1 \leq p<\infty$ and $c_{1}, c_{2}>-1$, a function $f \in L^{p}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$ satisfying $B_{c_{1}, c_{2}} f=f$ needs not be 2 -harmonic. Indeed, for every $1 \leq p<\infty$ and $c_{1}, c_{2}>-1$, there exist uncountably many joint eigenfunctions $f \in L^{p}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$ of invariant Laplacians satisfying $B_{c_{1}, c_{2}} f=f$ (theorem 1.1 of [4]).

This paper is about the space $M_{c_{1}, c_{2}}^{p}$ of function $f \in L^{p}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$ satisfying $B_{c_{1}, c_{2}} f=f$ for $1 \leq p<\infty$ and $c_{1}, c_{2}>-1$. We express the identity operator on $M_{c_{1}, c_{2}}^{p}$ as an entire function of invariant Laplacians. Then we find the joint spectrum of invariant Laplacians in an attempt to express $M_{c_{1}, c_{2}}^{p}$ by using spectral decompositions. Our original aim is to prove that the space $M_{c_{1}, c_{2}}^{p}$ is generated by the joint eigenfunctions of $\tilde{\Delta}_{1}$ and $\tilde{\Delta}_{2}$. However, we are unable to provide the entire proof so that we leave it as a conjecture. In this paper, instead, we prove the conjecture for $f \in M_{c_{1}, c_{2}}^{p}$ of the form $f(z, w)=u(z) v(w)$.

In Section 2, we mention some preliminaries on eigenspaces and eigenvalues of invariant Laplacians, most of which have appeared in [4] and [7]. In Section 3, we mention some important properties of the operator the operator $B_{k+c_{1}, \ell+c_{2}}$ where k, ℓ are non-negative integers. In Section 4, we suggest a conjecture on $M_{c_{1}, c_{2}}^{p}$ and provide related propositions.

2. Preliminaries

Here we mention some preliminaries on function theories in the bidisc, related with eigenspaces and eigenvalues of invariant Laplacians. For $u \in C^{2}(D), \tilde{\Delta} u$ the invariant Laplacian of u is defined by $\tilde{\Delta} u(z)=$ $\left(1-|z|^{2}\right)^{2} \Delta u(z)$. Acting on $f \in C^{2}\left(D^{2}\right), \tilde{\Delta}_{1}, \tilde{\Delta}_{2}$ are the invariant Laplacians with respect to the first and second variable respectively, such as
$\left(\tilde{\Delta}_{1} f\right)(z, w)=\left(1-|z|^{2}\right)^{2}\left(\Delta_{1} f\right)(z, w)$. For $\lambda, \mu \in \mathbb{C}$, we define the joint eigenspace $X_{\lambda, \mu}$ by

$$
X_{\lambda, \mu}=\left\{f \in C^{2}\left(D^{2}\right) \mid \tilde{\Delta}_{1} f=\lambda f \text { and } \tilde{\Delta}_{2} f=\mu f\right\}
$$

It is known that (section 3 of [4]) for $c_{1}, c_{2}>-1$ and $1 \leq p<\infty$, $L^{p}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right) \cap X_{\lambda, \mu} \neq\{0\} \quad$ if and only if $\quad \alpha \in \Sigma_{c_{1}, p}$ and $\beta \in \Sigma_{c_{2}, p}$ where $\alpha, \beta \in \mathbb{C}$ satisfy $\lambda=-4 \alpha(1-\alpha), \mu=-4 \beta(1-\beta)$ and

$$
\Sigma_{c, p}=\left\{\alpha \in \mathbb{C} \left\lvert\,-\frac{c+1}{p}<\operatorname{Re} \alpha<1+\frac{c+1}{p}\right.\right\} .
$$

The key idea of theorem 1.1 of [4] is that $L^{p}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right) \cap X_{\lambda, \mu}$ is also an eigenspace of $B_{c_{1}, c_{2}}$ with eigenvalue

$$
\frac{\Gamma\left(c_{1}+1+\alpha\right) \Gamma\left(c_{1}+2-\alpha\right)}{\Gamma\left(c_{1}+1\right) \Gamma\left(c_{1}+2\right)} \frac{\Gamma\left(c_{2}+1+\beta\right) \Gamma\left(c_{2}+2-\beta\right)}{\Gamma\left(c_{2}+1\right) \Gamma\left(c_{2}+2\right)}
$$

and there exist uncountably many pairs of $(\alpha, \beta) \in \Sigma_{c_{1}, p} \times \Sigma_{c_{2}, p}$ satisfying

$$
\frac{\Gamma\left(c_{1}+1+\alpha\right) \Gamma\left(c_{1}+2-\alpha\right)}{\Gamma\left(c_{1}+1\right) \Gamma\left(c_{1}+2\right)} \frac{\Gamma\left(c_{2}+1+\beta\right) \Gamma\left(c_{2}+2-\beta\right)}{\Gamma\left(c_{2}+1\right) \Gamma\left(c_{2}+2\right)}=1 .
$$

Moreover, if $\lambda=-4 \alpha(1-\alpha)$ then we get

$$
\frac{\Gamma\left(c_{1}+1+\alpha\right) \Gamma\left(c_{1}+2-\alpha\right)}{\Gamma\left(c_{1}+1\right) \Gamma\left(c_{1}+2\right)}=\frac{1}{G_{c_{1}}(\lambda)},
$$

where

$$
G_{c}(z)=\prod_{j=1}^{\infty}\left(1+\frac{z}{(j+c)(j+c+1)}\right)
$$

is an entire function.

3. the operator $B_{k+c_{1}, \ell+c_{2}}$

Definition 3.1. For $f \in L^{1}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$ and $k, \ell=0,1,2, \cdots$, we define the operator $B_{k+c_{1}, \ell+c_{2}}$ on $L^{1}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$ by the obvious way such as

$$
\begin{aligned}
\left(B_{k+c_{1}, \ell+c_{2}} f\right)(z, w) & =(k+1)(\ell+1) \cdot \\
& \iint_{D^{2}}\left(1-|x|^{2}\right)^{k}\left(1-|y|^{2}\right)^{\ell} f\left(\varphi_{z}(x), \varphi_{w}(y)\right) d \nu_{c_{1}}(x) d \nu_{c_{2}}(y) .
\end{aligned}
$$

Just the same way as the proof of Proposition 3.2 of [4], it is easy to see that

$$
\left(B_{k+c_{1}, \ell+c_{2}} f\right) \circ \psi=B_{k+c_{1}, \ell+c_{2}}(f \circ \psi)
$$

for $k, \ell \geq 0, \psi \in \operatorname{Aut}\left(D^{2}\right)$ and $f \in L^{1}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$. Also, the operators $B_{c_{1}, c_{2}}$ and $B_{k+c_{1}, \ell+c_{2}}$ commute on $L^{1}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$.

The following lemma comes directly from Proposion 2.1 and Proposion 2.2 of [6].

Lemma 3.2. For $k, \ell \geq 0, B_{k+c_{1}, \ell+c_{2}}$ is a bounded operator on $L^{p}\left(D^{2}, \nu_{c_{1}} \times\right.$ $\nu_{c_{2}}$) when $p>1$. And for $k, \ell>0, B_{k+c_{1}, \ell+c_{2}}$ is a bounded linear operator on $L^{1}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$.

Using Lemma 3.2, we get the following proposition.
Proposition 3.3. If $1 \leq p<\infty$, then for every $f \in L^{p}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$ we have

$$
\lim _{n \rightarrow \infty}\left\|f-B_{n+c_{1}, n+c_{2}} f\right\|_{p}=0
$$

Proof. By Proposition 2.2 of [6], we get $\lim _{n \rightarrow \infty}\left\|B_{n+c_{1}, n+c_{2}}\right\|=1$ on $L^{1}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$.
Since $B_{n+c_{1}, n+c_{2}}$ is a contraction which fixes 2 -harmonic functions on $L^{\infty}\left(D^{2}\right)$, an interpolation theorem gives $\lim _{n \rightarrow \infty}\left\|B_{n+c_{1}, n+c_{2}}\right\|=1$ on $L^{p}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$ for $1 \leq p<\infty$.

If $g \in C\left(\overline{D^{2}}\right)$, then Definition 2.1 shows that $\left(B_{n+c_{1}, n+c_{2}} g\right)(z, w) \rightarrow$ $g(z, w)$ for every $z, w \in D$ as $n \rightarrow \infty$. Hence by dominated convergence theorem, $\lim _{n \rightarrow \infty}\left\|g-B_{n+c_{1}, n+c_{2}} g\right\|_{p}=0$.

If $1 \leq p<\infty$ and $f \in L^{p}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$ then there is a sequence $\left\{g_{k}\right\}$ in $C\left(\overline{D^{2}}\right)$ such that $\left\|f-g_{k}\right\|_{p} \rightarrow 0$ as $k \rightarrow \infty$. Hence, we get the proof from the inequality

$$
\left\|f-B_{n+c_{1}, n+c_{2}} f\right\|_{p} \leq\left\|f-g_{k}\right\|_{p}+\left\|g_{k}-B_{n+c_{1}, n+c_{2}} g_{k}\right\|_{p}+\left\|B_{n+c_{1}, n+c_{2}}\left(g_{k}-f\right)\right\|_{p} .
$$

The following lemma directly comes from Proposition 2.4 of [1].
Lemma 3.4. For $k, \ell \geq 0, \psi \in \operatorname{Aut}\left(D^{2}\right)$, and $f \in L^{1}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right)$ we get
$\tilde{\Delta}_{1} B_{k+c_{1}, \ell+c_{2}} f=4\left(k+1+c_{1}\right)\left(k+2+c_{1}\right)\left(B_{k+c_{1}, \ell+c_{2}} f-B_{k+1+c_{1}, \ell+c_{2}} f\right)$
$\tilde{\Delta}_{2} B_{k+c_{1}, \ell+c_{2}} f=4\left(\ell+1+c_{2}\right)\left(\ell+2+c_{2}\right)\left(B_{k+c_{1}, \ell+c_{2}} f-B_{k+c_{1}, \ell+1+c_{2}} f\right)$
and

$$
B_{k+c_{1}, \ell+c_{2}} f=G_{k, c_{1}}\left(\tilde{\Delta}_{1}\right) G_{\ell, c_{2}}\left(\tilde{\Delta}_{2}\right) B_{c_{1}, c_{2}} f
$$

where

$$
G_{m, c}(z)=\prod_{i=1}^{m}\left(1-\frac{z}{4(c+i)(c+i+1)}\right)
$$

is an entire function.

4. The space $M_{c_{1}, c_{2}}^{p}$

In this section, for $c_{1}, c_{2}>-1$ and $1 \leq p<\infty$, we make an attempt to characterize

$$
M_{c_{1}, c_{2}}^{p}=\left\{f \in L^{p}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right): B_{c_{1}, c_{2}} f=f\right\}
$$

which is a Banach space of real analytic functions. The entire function

$$
G_{c}(z)=\prod_{j=1}^{\infty}\left(1+\frac{z}{(j+c)(j+c+1)}\right)
$$

mentioned at the end of Section 2 plays an important role.
Proposition 4.1. $G_{c_{1}}\left(\tilde{\Delta}_{1}\right) G_{c_{2}}\left(\tilde{\Delta}_{2}\right)$ is the identity operator on $M_{c_{1}, c_{2}}^{p}$.
Proof. By Lemma 3.4, for $f \in M_{c_{1}, c_{2}}^{p}$ we get

$$
\tilde{\Delta}_{1} f=\tilde{\Delta}_{1} B_{c_{1}, c_{2}} f=4\left(1+c_{1}\right)\left(2+c_{1}\right)\left(f-B_{1+c_{1}, c_{2}} f\right)
$$

Since $B_{1+c_{1}, c_{2}}$ is bounded on $L^{p}\left(D^{2}\right)$ and commutes with $B_{c_{1}, c_{2}}$,

$$
\begin{aligned}
B_{c_{1}, c_{2}}\left(\tilde{\Delta}_{1} f\right) & =4\left(1+c_{1}\right)\left(2+c_{1}\right)\left(B_{c_{1}, c_{2}} f-B_{c_{1}, c_{2}} B_{1+c_{1}, c_{2}} f\right) \\
& =4\left(1+c_{1}\right)\left(2+c_{1}\right)\left(f-B_{1+c_{1}, c_{2}} B_{c_{1}, c_{2}} f\right) \\
& =4\left(1+c_{1}\right)\left(2+c_{1}\right)\left(f-B_{1+c_{1}, c_{2}} f\right)=\tilde{\Delta}_{1} f
\end{aligned}
$$

Likewise we get $B_{c_{1}, c_{2}}\left(\tilde{\Delta}_{2} f\right)=\tilde{\Delta}_{2} f$ for $f \in M_{c_{1}, c_{2}}^{p}$. Hence $\tilde{\Delta}_{1}, \tilde{\Delta}_{2}$ are bounded operators on $M_{c_{1}, c_{2}}^{p}$. From Lemma 3.4, for $f \in M_{c_{1}, c_{2}}^{p}$ and $n \in \mathbb{N}$,

$$
B_{n+c_{1}, n+c_{2}} f=G_{n, c_{1}}\left(\tilde{\Delta}_{1}\right) G_{n, c_{2}}\left(\tilde{\Delta}_{2}\right) B_{c_{1}, c_{2}} f
$$

For $c>-1$, the function

$$
G_{c}(z)=\prod_{j=1}^{\infty}\left(1+\frac{z}{(j+c)(j+c+1)}\right)
$$

is entire, so that we have

$$
G_{n, c_{1}}\left(\tilde{\Delta}_{1}\right) \rightarrow G_{c_{1}}\left(\tilde{\Delta}_{1}\right) \text { and } G_{n, c_{2}}\left(\tilde{\Delta}_{2}\right) \rightarrow G_{c_{2}}\left(\tilde{\Delta}_{2}\right)
$$

in the operator norm since $G_{n, c_{1}} \rightarrow G_{c_{1}}$ and $G_{n, c_{2}} \rightarrow G_{c_{2}}$ uniformly on compact set of \mathbb{C}.
Now take $n \rightarrow \infty$, by Proposition 3.3 we get

$$
f=G_{c_{1}}\left(\tilde{\Delta}_{1}\right) G_{c_{2}}\left(\tilde{\Delta}_{2}\right) f
$$

Therefore, $G_{c_{1}}\left(\tilde{\Delta}_{1}\right) G_{c_{2}}\left(\tilde{\Delta}_{2}\right)=I$ on $M_{c_{1}, c_{2}}^{p}$.
On the other hand, from Section 2 we get

$$
G_{c}(\lambda)=\frac{\Gamma(c+1) \Gamma(c+2)}{\Gamma(c+1+\alpha) \Gamma(c+2-\alpha)}
$$

if $c>-1$ and $\lambda=-4 \alpha(1-\alpha)$. Hence, if we define

$$
\Omega_{c, p}=\left\{\lambda=-4 \alpha(1-\alpha) \left\lvert\,-\frac{c+1}{p}<\operatorname{Re} \alpha<1+\frac{c+1}{p}\right.\right\},
$$

then we have
$L^{p}\left(D^{2}, \nu_{c_{1}} \times \nu_{c_{2}}\right) \cap X_{\lambda, \mu} \neq\{0\} \quad$ if and only if $\quad \lambda \in \Omega_{c_{1}, p}$ and $\mu \in \Omega_{c_{2}, p}$
Therefore, the set

$$
E=\left\{(\lambda, \mu) \in \Omega_{c_{1}, p} \times \Omega_{c_{2}, p} \mid G_{c_{1}}(\lambda) G_{c_{2}}(\mu)=1\right\}
$$

is the set of all joint eigenvalues of $\tilde{\Delta}_{1}$ and $\tilde{\Delta}_{2}$ on $M_{c_{1}, c_{2}}^{p}$. Since $G_{c_{1}}\left(\tilde{\Delta}_{1}\right) G_{c_{2}}\left(\tilde{\Delta}_{2}\right)=$ I on $M_{c_{1}, c_{2}}^{p}$, by the holomorphic functional calculus (3.11 of [2]),

$$
1=\sigma\left(G_{c_{1}}\left(\tilde{\Delta}_{1}\right) G_{c_{2}}\left(\tilde{\Delta}_{2}\right)\right)=\left\{G_{c_{1}}(\lambda) G_{c_{2}}(\mu) \mid(\lambda, \mu) \in \sigma\left(\tilde{\Delta}_{1}, \tilde{\Delta}_{2}\right)\right\}
$$

Therefore, we get the following proposition.
Proposition 4.2. The joint spectrum $\sigma\left(\tilde{\Delta}_{1}, \tilde{\Delta}_{2}\right)$ of $\tilde{\Delta}_{1}$ and $\tilde{\Delta}_{2}$ on $M_{c_{1}, c_{2}}^{p}$ is

$$
\sigma\left(\tilde{\Delta}_{1}, \tilde{\Delta}_{2}\right)=\left\{(\lambda, \mu) \in \bar{\Omega}_{c_{1}, p} \times \bar{\Omega}_{c_{2}, p} \mid G_{c_{1}}(\lambda) G_{c_{2}}(\mu)=1\right\}
$$

In view of Proposition 4.2 we may conjecture that the space $M_{c_{1}, c_{2}}^{p}$ is generated by the joint eigenfunctions of $\tilde{\Delta}_{1}$ and $\tilde{\Delta}_{2}$ in $M_{c_{1}, c_{2}}^{p}$. But this conjecture is very hard for us to prove partly because the operators $\tilde{\Delta}_{1}, \tilde{\Delta}_{2}$ are not normal so that any type of spectral decomposition of $M_{c_{1}, c_{2}}^{p}$ with respect to $\tilde{\Delta}_{1}$ and $\tilde{\Delta}_{2}$ is unavailable. The author hope to return to this problem in the future work.

Here instead, we will prove the conjecture for $f \in M_{c_{1}, c_{2}}^{p}$ of the form $f(z, w)=u(z) v(w)$.

Proposition 4.3. Given $1 \leq p<\infty$ and $c_{1}, c_{2}>-1$, if $f(z, w)=$ $u(z) v(w) \in M_{c_{1}, c_{2}}^{p}$, then then f can be written as a finite sum of joint eigenfunctions of $\tilde{\Delta}_{1}$ and $\tilde{\Delta}_{2}$.

Proof. If $f(z, w)=u(z) v(w)$ for some $u \in L^{p}\left(D, \nu_{c_{1}}\right)$ and $v \in L^{p}\left(D, \nu_{c_{2}}\right)$, then

$$
\begin{aligned}
\left(B_{c_{1}, c_{2}} f\right)(z, w) & =\int_{D} u\left(\varphi_{z}(x)\right) d \nu_{c_{1}}(x) \int_{D} v\left(\varphi_{w}(y)\right) d \nu_{c_{2}}(y) \\
& =\left(T_{c_{1}} u\right)(z)\left(T_{c_{2}} v\right)(w) .
\end{aligned}
$$

Fix $1 \leq p<\infty$ and $c_{1}, c_{2}>-1$, then let H be the set of all $r \in \mathbb{C} \backslash\{0\}$ such that both $\left\{u \in L^{p}\left(D, \nu_{c_{1}}\right) \mid T_{c_{1}} u=r u\right\}$ and $\left\{v \in L^{p}\left(D, \nu_{c_{2}}\right) \mid T_{c_{2}} v=\right.$ $\left.\frac{1}{r} v\right\}$ are non-empty.

For $s, t \in H$ let us define the space
$K_{s}^{1}=\left\{u \in L^{p}\left(D, \nu_{c_{1}}\right) \mid T_{c_{1}} u=s u\right\}$ and $K_{t}^{2}=\left\{u \in L^{p}\left(D, \nu_{c_{2}}\right) \mid T_{c_{2}} u=t u\right\}$.
Then, for $f=u v \in M_{c_{1}, c_{2}}^{p}$ there exists an $r \in H$, such that $u \in K_{r}^{1}$ and $v \in K_{1 / r}^{2}$.
Just as in Lemma 3.4 and Proposion 4.1, for $r \in H$ we have the following
(1) $\tilde{\Delta}$ is a bounded operator on K_{r}^{1}.
(2) $r G_{c_{1}}(\tilde{\Delta})$ is the identity operator on K_{r}^{1}.
(3) The set $\left\{\lambda \in \Omega_{c_{1}, p} \left\lvert\, G_{c_{1}}(\lambda)=\frac{1}{r}\right.\right\}$ is the set of all eigenvalues of $\tilde{\Delta}$ on K_{r}^{1}.
Moreover, by Proposition 3.7 (d) of [1], $\left\{\lambda \in \Omega_{c_{1}, p} \left\lvert\, G_{c_{1}}(\lambda)=\frac{1}{r}\right.\right\}$ is a finite set.
Therefore, if

$$
\left\{\lambda \in \Omega_{c_{1}, p} \left\lvert\, G_{c_{1}}(\lambda)=\frac{1}{r}\right.\right\}=\left\{\lambda_{1}, \cdots, \lambda_{N}\right\}
$$

and

$$
Q(z)=\prod_{i=1}^{N}\left(z-\lambda_{i}\right)
$$

then $Q(\tilde{\Delta})=0$ on K_{r}^{1}. Hence by Lemma 4.1 of [1], every $u \in K_{r}^{1}$ is a sum

$$
u=u_{\lambda_{1}}+\cdots+u_{\lambda_{N}},
$$

where $u_{\lambda_{i}} \in L^{p}\left(D, \nu_{c_{1}}\right)$ satisfies $\tilde{\Delta} u_{\lambda_{i}}=\lambda_{i} u_{\lambda_{i}}$ for $1 \leq i \leq N$. By the same way every $v \in K_{1 / r}^{2}$ is a sum

$$
v=v_{\mu_{1}}+\cdots+v_{\mu_{m}}
$$

where $\left\{\mu_{1}, \cdots, \mu_{m}\right\}=\left\{\mu \in \Omega_{c_{2}, p} \mid G_{c_{2}}(\mu)=r\right\}$ and $v_{\mu_{j}} \in L^{p}\left(D, \nu_{c_{2}}\right)$ satisfies

$$
\tilde{\Delta} v_{\mu_{j}}=\mu_{j} v_{\mu_{j}} \text { for } 1 \leq j \leq m
$$

Hence we can write f as

$$
f(z, w)=\left(u_{\lambda_{1}}(z)+\cdots+u_{\lambda_{N}}(z)\right)\left(v_{\mu_{1}}(w)+\cdots+v_{\mu_{m}}(w)\right)
$$

which is a finite sum of joint eigenfunctions.

References

[1] P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993) (2), 380-397.
[2] J.P Ferrier, Spectral Theory and Complex Analysis, North-Holland, 1973.
[3] H. Furstenberg, Boundaries of Riemannian symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969-1970), pp. 359-377. Pure and Appl. Math., Vol. 8, Dekker, New York, 1972.
[4] J. Lee, Weighted Berezin transform in the polydisc, J. Math. Anal. Appl. 338 (2) (2008), 1489-1493.
[5] J. Lee, Some properties of the Berezin transform in the bidisc, Comm. Korean Math. Soc. 32 (3) (2017), 779-787.
[6] J. Lee, Some properties of the weighted Berezin transform in the unit disc and bidisc, Global Journal of Pure and Applied Mathematics, 14 (2) (2018), 275-283
[7] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Springer-Verlag, New York Inc., 1980.

Jaesung Lee

Department of Mathematics
Sogang University
Seoul 121-742, Korea
E-mail: jalee@sogang.ac.kr

