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BETA-ALMOST RICCI SOLITONS ON ALMOST

COKÄHLER MANIFOLDS

Debabrata Kar and Pradip Majhi

Abstract. In the present paper is to classify Beta-almost (β-almost)
Ricci solitons and β-almost gradient Ricci solitons on almost CoKähler
manifolds with ξ belongs to (k, µ)-nullity distribution. In this pa-
per, we prove that such manifolds with V is contact vector field and
Qφ = φQ is η-Einstein and it is steady when the potential vector
field is pointwise collinear to the reeb vectoer field. Moreover, we
prove that a (k, µ)-almost CoKähler manifolds admitting β-almost
gradient Ricci solitons is isometric to a sphere.

1. Introduction

In 1982, R. S. Hamilton [15] introduced the notion of Ricci flow to find
a canonical metric on a smooth manifold. The Ricci flow is an evolution
equation for metrics on a Riemannian manifold defined as follows:

∂

∂t
g = −2S, (1.1)

where S denotes the Ricci tensor. Ricci solitons are special solutions
of the Ricci flow equation (1.1) of the form g = σ(t)ψ∗t g with the initial
condition g(0) = g, where ψt are diffeomorphisms of M and σ(t) is the
scaling function. A Ricci soliton is a generalization of an Einstein metric.
We recall the notion of Ricci soliton according to [5]. On the manifold
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M , a Ricci soliton is a triple (g, V, λ) with g, a Riemannian metric, V
a vector field, called the potential vector field and λ a real scalar such
that

£V g + 2S + 2λg = 0, (1.2)

where £ is the Lie derivative. Metrics satisfying (1.2) are interesting
and useful in physics and are often referred as quasi-Einstein ( [7], [8]).
Compact Ricci solitons are the fixed points of the Ricci flow ∂

∂t
g = −2S

projected from the space of metrics onto its quotient modulo diffeomor-
phisms and scalings, and often arise blow-up limits for the Ricci flow on
compact manifolds. Theoretical physicists have also been looking into
the equation of Ricci soliton in relation with string theory. The initial
contribution in this direction is due to Friedan [12] who discusses some
aspects of it. Recently, the notion of almost Ricci soliton have intro-
duced [21] by Piagoli, Riogoli, Rimoldi and Setti.
The Ricci soliton is said to be shrinking, steady and expanding according
as λ is negative, zero and positive respectively. Ricci solitons have been
studied by several authors such as ( [9], [10], [16], [17], [18], [24], [25])
and many others.
Recently, Wang, Gomes and Xia [23] generalized almost Ricci soliton to
k -almost Ricci soliton which is defined as follows:

Definition 1.1. A complete Riemannian manifold (M2n+1, g) is said
to be a β-almost Ricci soliton, denoted by (M2n+1, g, V, β, λ), if there
exist a smooth vector field X on M2n+1 such that

S +
β

2
£V g + λg = 0, (1.3)

where λ and β are smooth functions on M2n+1. λ is called soliton func-
tion and V is called the potential vector field.

A β-almost Ricci soliton is said to be shrinking, steady and expanding
according as λ is negative, zero and positive respectively. A β-almost
Ricci soliton is called β-Ricci soliton if λ is constant. A β-almost Ricci
soliton is said to be trivial, that is, Einstein if the flow vector field V
is homothetic, that is, £V g = cg, for some constant c. Otherwise, it
is called non-trivial. A β-almost Ricci soliton is said to be β-almost
gradient Ricci soliton if the potential vector field V is the gradient of a
smooth function f on M2n+1, that is, V = Df , where D is the gradient
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operator of g on M2n+1. For convanience, we denote (M2n+1, g,Df, β, λ)
as a β-almost gradient Ricci soliton with potential function f .

In particular, a Ricci soliton is the 1-almost Ricci soliton with con-
stant soliton λ and an almost Ricci soliton is nothing but the 1-almost
Ricci soliton. Recently, Ghosh and Patra studied [14] the k-almost Ricci
solitons on contact geometry. In [1], Barros and Ribeiro proved that a
compact almost Ricci soliton with constant scalar curvature is isometric
to an Euclidean sphere. In this connection, a theorem has also been
proved by Wang, Gomes and Xia in [23] for k-almost Ricci soiton which
is given as follows:

Theorem 1.1. [23] Let (Mn, g, V, β, λ), n ≥ 3 be a non-trivial β-
almost Ricci soliton with constant scalar curvature r. If Mn is compact,

then it is isometric to a standard sphere Sn(c) of radius c =
√

2n(2n+1)
r

.

The above Theorem will be used in later to prove our results.

In the present paper, after introduction, we study almost CoKähler
manifolds. In section 3, we characterize β-almost Ricci solitons on almost
CoKähler manifolds and prove several important results. In the last
section, we consider β-almost gradient Ricci solitons on almost CoKähler
manifolds.

2. Almost CoKähler manifolds

In the present section, we give some well known definitions and basic
formulae on Almost CoKaehler manifolds which will be very useful in the
next sections. An almost contact structure on a (2n + 1)-dimensional
smooth manifold M2n+1 is a triplet (φ, ξ, η), where φ is a (1, 1)-type
tensor field, ξ is a global vector field and η is a 1-form satisfying ( [2], [3])

φ2X = −X + η(X)ξ, η(ξ) = 1, (2.1)

Here also holds

φξ = 0, η ◦ φ = 0. (2.2)

If an almost contact manifold admits a Riemannian metric g such that

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (2.3)
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for any vector fields X, Y , then the manifold is called an almost contact
metric metric manifold. In such a manifold we can define a fundamental
2-form Φ by

Φ(X, Y ) = g(X,φY ), (2.4)

for any vector fields X, Y . An almost contact metric manifold is said to
be an almost CoKähler manifold if both η and Φ are closed. That is, dη =
0 and dΦ = 0. An almost contact metric manifold (M2n+1, φ, ξ, η, g) is
said to be normal if the almost complex structure J on M ×R defined
by (pp. 80 of [3])

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
),

where f is a real valued function defined on M ×R, is integrable. More-
over, if an almost contact manifold (M2n+1, φ, ξ, η) is normal, then it is
said to be a CoKähler manifold. In addition an almost contact metric
manifold (M2n+1, φ, ξ, η, g) is CoKähler if and only if ∇φ = 0, or equiv-
alently, ∇Φ = 0.
Let M2n+1(φ, ξ, η, g) be an almost CoKähler manifold. Let us consider
two operators h and l which are defined by h = 1

2
£ξφ and l = R(., ξ)ξ,

where R denotes the curvature tensor and £ is the Lie differentiation.
These operators are symmetric of type (1, 1) and satisfies ( [6], [11] [19])
the following

hξ = h′ξ = 0, Trh = Trh′ = 0, hφ = −φh, (2.5)

where h′ = h · φ. Also in an almost CoKähler manifold, we have ( [6],
[11] [19])

∇Xξ = h′X = hφX, (2.6)

φlφ− l = 2h2, (2.7)

for any vector fields X.

A (k, µ)-contact metric manifold is a generalization of Sasakian and
K-contact manifold. In [4] Blair, Koufogiorgos and Papantoniou intro-
duced and studied the notion of (k, µ)-nullity distribution on contact
metric manifolds M2n+1(φ, ξ, η, g). A contact metric manifold M2n+1

whose curvature tensor satisfies

R(X, Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ],
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for all vector fields X, Y on M2n+1, where h = 1
2
£ξφ (£ denotes the Lie

derivative of φ along ξ and k, µ ∈ R is known as (k, µ)-contact manifold
and ξ is said to belongs to the (k, µ)-nullity distribution. Several authors
have studied ( [20], [22]) the (k, µ)-contact metric manifold and obtain
some interesting results. When k, µ are smooth functions, it is said to be
the generalized (k, µ)-nullity distribution. Thus we have the following:

Definition 2.1. An almost CoKähler manifold M2n+1(φ, ξ, η, g) is
said to be a (k, µ)-almost CoKähler manifold if ξ satisfies the equation

R(X, Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ], (2.8)

for all vector fields X, Y ∈ χ(M2n+1) and k, µ are real constants.
In a consequence of (2.8), we have l = −kφ2 + µh. In view of this, from
(2.7) we deduce

h2 = kφ2 (2.9)

and also we obtain

S(X, ξ) = 2nkη(Y ), (2.10)

Qξ = 2nkξ. (2.11)

Definition 2.2. A vector field V on a contact manifold is said to be
a contact vector field if it preserve the contact form η, that is

£V η = ψη, (2.12)

for some smooth function ψ on M . When ψ = 0 on M , the vector field
V is called a strict contact vector field.

Now we state some well known Lemmas:

Lemma 2.1. (Poincare Lemma): In Riemannian manifold d2 = 0,
where d is the exterior differential operator, that is,

g(∇Xgradζ, Y ) = g(∇Y gradζ,X), (2.13)

for any two vector fields X, Y and for any smooth function ζ.

Lemma 2.2. ( [13]) If a vector field X leaves the structure tensor φ
of the contact metric manifold M invariant, then there exists a constant
c such that £Xg = c(g + η ⊗ η).
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3. β-almost Ricci solitons on (k, µ)-Almost CoKähler mani-
folds

This section is devoted to study β-almost Ricci solitons on Almost
CoKähler manifolds.

(£V dη)(X, Y ) = (£V g)(X,φY ) + g(X, (£V φ)Y ), (3.1)

for all vector fields X, Y on M . Multiplying both sides of (3.1) and
then using (1.3), we get

β(£V dη)(X, Y ) = −2g(QX, φY )− 2λg(X,φY ) + βg(X, (£V φ)Y ),(3.2)

for all vector fields X, Y on M . As V is a contact vector field, from
(2.12) we have

£V dη = d£V η = (dψ) ∧ η + ψ(dη), (3.3)

from which it follows that

(£V dη)(X, Y ) =
1

2
{dψ(X)η(Y )− dψ(Y )η(X)}+ ψg(X,φY ). (3.4)

In view of (3.2) and (3.4) we obtain

βdψ(X)η(Y )− βdψ(Y )η(X) + 2βψg(X,φY )

= −4g(QX, φY )− 4λg(X,φY ) + 2βg(X, (£V φ)Y ), (3.5)

and hence we get

2β(£V φ)Y = 4QφY + 2(ψβ + 2λ)φY

+β{η(Y )Dψ − (Y ψ)ξ}. (3.6)

Putting Y = ξ in (3.6) we have

2(£V φ)ξ = Dψ − (ξψ)ξ, (3.7)

where we use β is positive. Tracing the equation (1.3) gives

βdivV = −r− (2n + 1)λ. (3.8)

Let Ω be the volume form of M , that is,

Ω = η ∧ (dη)n 6= 0. (3.9)

Taking Lie derivative of the foregoing equation along the vector field V
and using the formula £V Ω = (divV)Ω and (3.3) yields

(divV)Ω = (n + 1)ψΩ, (3.10)
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and hence

divV = (n + 1)ψ. (3.11)

Using (3.11) in (3.8) we infer

r = −(n+ 1)ψβ − (2n+ 1)λ. (3.12)

The equation (1.3) can also be exhibited as

S(X, Y ) +
β

2
(£V g)(X, Y ) + λg(X, Y ) = 0. (3.13)

Substituting ξ for X and Y in (3.13) and applying (2.10) we obtain

βg(£V ξ, ξ) = 2nk + λ. (3.14)

Replacing Y by ξ in (3.13) and then using (2.10) and (2.12) we deduce

β£V ξ = (βψ + 4nk + 2λ)ξ. (3.15)

Applying (3.15) in (3.14) we have

ψβ = −λ− 2nk. (3.16)

Making use of (3.16) in (3.15) we get

β£V ξ = (2nk + λ)ξ. (3.17)

With the help of the first term of (2.2) and (3.17) we obtain

β(£V φ)ξ = β£V φξ − φ(β£V ξ) = 0, (3.18)

and hence from (3.7) it follows that

Dψ = (ξψ)ξ. (3.19)

Taking inner product of (3.19) with respect to Y we get

dψ(Y ) = (ξψ)η(Y ), (3.20)

from which it follows that

dψ = (ξψ)η. (3.21)

Taking exterior derivative of (3.21) and using (2.13) we infer

d2ψ = d(ξψ) ∧ η + (ξψ)dη, (3.22)

which implies

d(ξψ) ∧ η + (ξψ)dη = 0. (3.23)

Taking wedge product with η on (3.22) we have

(ξψ)η ∧ dη = 0. (3.24)
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As η ∧ (dη)n is the volume element, then η ∧ dη 6= 0 and hence from
(3.24) we get

ξψ = 0, (3.25)

and hence from (3.21) it follows that

dψ = 0, (3.26)

and hence ψ becomes constant. Integrating (3.11) and then by diver-
gence theorem we infer

ψ = 0 (3.27)

and accordingly from (3.16) we deduce

λ = −2nk. (3.28)

Thus we can state the following:

Theorem 3.1. LetM2n+1(φ, ξ, η, g) be a (k, µ)-almost CoKähler man-
ifold with V as a contact vector field. If g is a β-almost Ricci soliton with
V as the potential vector field, then it is shrinking, steady or expanding
according as k is positive, zero or negative.

Using (3.27) and (3.28) in (3.12) we get

r = 2nk(2n+ 1). (3.29)

By the virtue of the equation (3.29) and the Theorem 1.1 we can
conclude the following:

Theorem 3.2. LetM2n+1(φ, ξ, η, g) be a compact (k, µ)-almost CoKähler
manifold having non-zero k and V as a contact vector field. If g is a β-
almost Ricci soliton with V as the potential vector field, then M is

isometric to a sphere S2n+1(c) of radius c =
√

4n+3
nk

.

In particular, if k = 4n+3
n

, then the manifold isometric to an unit
sphere S2n+1(c). Thus we have the following:

Corollary 3.1. Let M2n+1(φ, ξ, η, g) be a compact (k, µ)-almost
CoKähler manifold with V as a contact vector field. If g is a β-almost
Ricci soliton with V as the potential vector field, then M is isometric to
an unit sphere S2n+1(c).
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Using the fact that ψ is constant and (3.16) in (3.6) and (2.12) re-
spectively we obtain

β(£V φ)Y = 2QφY + (λ− 2nk)φY (3.30)

and

β£V η = −(λ+ 2nk)η. (3.31)

Afterwards we deduce

(£V φ)Y = £V φY − φ(£V Y ). (3.32)

Substituting Y = φY in the preceeding equation and using the first term
of (2.1) we infer

(£V φ)φY = £V φ
2Y − φ(£V φY )

= −£V Y + {£V η(Y )}ξ + η(Y )£V ξ − φ(£V φY ),(3.33)

from which it follows that

β(£V φ)φY = −β£V Y + β{£V η(Y )}ξ + βη(Y )£V ξ − βφ(£V φY ).(3.34)

Operating φ on the both sides of (3.32) and the using the first term of
(2.1) and then multiplying by β we have

βφ(£V φ)Y = βφ(£V φY ) + β£V Y − βη(£V Y )ξ. (3.35)

Adding (3.34) and (3.35) and using (3.17), (3.31) yields

βφ(£V φ)Y + β(£V φ)φY = 0. (3.36)

Let us assume that Qφ = φQ. Then, by the virtue of (3.30), from (3.36)
we obtain

QY =
2nk − λ

2
Y +

2nk + λ

2
η(Y )ξ, (3.37)

which shows that the manifold is η-Einstein. Hence we can state the
following:

Theorem 3.3. LetM2n+1(φ, ξ, η, g) be a (k, µ)-almost CoKähler man-
ifold with V as a contact vector field and Qφ = φQ. If g is a β-almost
Ricci soliton with V as the potential vector field, then M is η-Einstein.
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Taking covariant differentiation of (3.37) along an arbitrary vector
field X we get

(∇XQ)Y = −Xλ
2
Y +

Xλ

2
η(Y )ξ

+
2nk + λ

2
{g(Y, h′X)ξ + η(Y )h′X}. (3.38)

Taking inner product of (3.38) with Z we have

g((∇XQ)Y, Z) = −Xλ
2
g(Y, Z) +

Xλ

2
η(Y )η(Z) (3.39)

+
2nk + λ

2
{g(Y, h′X)η(Z) + g(h′X,Z)η(Y )}.

Contracting X and Z in (3.39) and using (2.5) we have

Y r = −Y λ+ (ξλ)η(Y ). (3.40)

Contracting Y and Z in (3.39) and using (2.5) we get

Xr = −n(Xλ) (3.41)

In view of (3.40) and (3.41) we obtain

(1− n)Xλ =
ξλ

2
η(X). (3.42)

Substituting X = ξ in the last equation entails

ξλ = 0. (3.43)

By the use of (3.43), the equation (3.42) reduces to

Xλ = 0, (3.44)

from which it follows that λ is constant and hence we have the following:

Theorem 3.4. LetM2n+1(φ, ξ, η, g), n > 1, be a (k, µ)-almost CoKähler
manifold with V as a contact vector field and Qφ = φQ. Then the β-
almost Ricci soliton becomes β-Ricci soliton.

Making use of (3.37) in the equation (3.30) yields

(£V φ)Y = 0, (3.45)

as β is positive.
In view if the (3.45) and the Lemma 2.2 we observe that

(£V g)(X, Y ) = c{g(X, Y ) + η(X)η(Y )}, (3.46)
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from which we can conclude that the β-Ricci soliton is non-trivial. Thus
we are in a position to state that

Theorem 3.5. LetM2n+1(φ, ξ, η, g) be a (k, µ)-almost CoKähler man-
ifold with V as a contact vector field and Qφ = φQ. Then the β-Ricci
soliton is non-trivial.

Now we shall consider a special type of β-almost Ricci soliton where
the potential vector field V is pointwise collinear with the reeb vector
field ξ. Then we have

V = αξ, (3.47)

where α is a non-zero smooth function on M in the connection that V
is non-zero.
Taking covariant derivative of (3.47) with respect to any vector field X
and using (2.6) we infer

∇XV = (Xα)ξ + αh′X. (3.48)

The eqution (1.3) can also be represented as

2S(X, Y ) + βg(∇XV, Y ) + βg(X,∇Y V ) + 2λg(X, Y ) = 0. (3.49)

Applying (3.48) in (3.49) we have

2S(X, Y ) + β{(Xα)η(Y ) + αg(h′X, Y )}
+β{(Y α)η(X) + αg(X, h′Y )}+ 2λg(X, Y ) = 0. (3.50)

Putting Y = ξ in (3.50) and using (2.10) we get

β(Dα) + β(ξα)ξ + (2nk + 2λ)ξ = 0. (3.51)

Putting X = Y = ξ in (3.50) we have

β(ξα) = −λ− 2nk. (3.52)

Making use of (3.52) in (3.51) yields

βDα + λξ = 0, (3.53)

from which it follows that

β(Xα) = −λη(X). (3.54)

Putting X = ξ in (3.54) we find

β(ξα) = −λ. (3.55)
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Using (3.55) in (3.52) we have

k = 0. (3.56)

By the virtue of the Theorem 3.1 and (3.56) we observe that β-almost
Ricci soliton becomes steady. Thus we can state the following:

Theorem 3.6. LetM2n+1(φ, ξ, η, g) be a (k, µ)-almost CoKähler man-
ifold with V as a contact vector field such that V is pointwise collinear
with the reeb vector field ξ. If g is a β-almost Ricci soliton with V as
the potential vector field, then it is steady.

4. β-almost gradient Ricci soliton on (k, µ)-almost CoKähler

In this section we characterize β-almost gradient Ricci soliton on
(k, µ)-almost CoKähler manifolds. Then the potential vector field V
can be expressed as

V = Df, (4.1)

where f is a smooth function on M2n+1.
By the help of (4.1) the equation (3.49) reduces to the equation

S(X, Y ) +
β

2
{g(∇XDf, Y ) + g(X,∇YDf)}+ λg(X, Y ) = 0. (4.2)

Making use of (2.13) in (4.2) we have

β∇XDf = −QX − λX. (4.3)

Taking covariant derivative of (4.3) with respect to any vector field Y
we obtain

β∇Y∇XDf =
1

β
(Y β){QX + λX} − (∇YQ)X

−Q(∇YX)− (Y λ)X − λ(∇YX), (4.4)

as β is positive. In view of (4.3) and (4.4), we can represent the curvature
tensor as follows:

βR(X, Y )Df =
1

β
(Xβ){QY + λY } − 1

β
(Y β){QX + λX}

−{(∇XQ)Y − (∇YQ)X} − {(Xλ)Y − (Y λ)X}.
(4.5)
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Taking inner product of (4.5) with ξ and using (2.10) we obtain

βg(R(X, Y )Df, ξ) =
1

β
{2nkη(Y ) + λη(Y )} − 1

β
{2nkη(X) + λη(X)}

−{g((∇XQ)ξ, Y )− g((∇YQ)ξ,X)}
−{(Xλ)η(Y )− (Y λ)η(X)}. (4.6)

Taking covariant derivative of (2.11) with respect to X we have

(∇XQ)ξ = 2nkh′X −Qh′X. (4.7)

Applying (4.7) in (4.6) we get

βg(R(X, Y )Df, ξ) =
2nk + λ

β
{(Xβ)η(Y )− (Y β)η(X)}

+{S(h′X, Y )− S(X, h′Y )

−{(Xλ)η(Y )− (Y λ)η(X)}. (4.8)

Also g(R(X, Y )Df, ξ) = −g(R(X, Y )ξ,Df). Then using (2.8) we find

g(R(X, Y )Df, ξ) = −k{(Xf)η(Y )− (Y f)η(X)}
−µ{η(Y )g(Df, hX)− η(X)g(Df, hY )}(4.9)

Using (4.9) in the equation (4.8) we have

−kβ{(Xf)η(Y )− (Y f)η(X)} − µβ{η(Y )g(Df, hX)− η(X)g(Df, hY )}

=
2nk + λ

β
{(Xβ)η(Y )− (Y β)η(X)}+ {S(h′X, Y )− S(X, h′Y )}

−{(Xλ)η(Y )− (Y λ)η(X)}. (4.10)

Replacing X by hX and Y by h2Y in (4.10) yields

QφX − φQX = 0, (4.11)

as we have taken k as a non-zero real number. Let {ei, φei, ξ}, i =
1, 2, 3, ..., n, be an orthonormal φ−basis of M such that Qei = σiei.
Then we have Qφei = σiφei. Substituting ei for X in the last equation
we get

Qφei = σiφei. (4.12)
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Making use of φ-basis and (2.11) we obtain

r = g(Qξ, ξ) +
n∑
i=1

[g(Qei, ei) + g(Qφei, φei)]

= 2nk + 2
n∑
i=1

σi. (4.13)

As σi are the eigen values,
∑n

i=1 σi is constant and hence r is constant.
Hence, following the Theorem 1.1 we can conclude:

Theorem 4.1. LetM2n+1(φ, ξ, η, g) be a compact (k, µ)-almost CoKähler
manifold with V as a contact vector field. If g is a β-almost gradient
Ricci soliton with V as the potential vector field, then M is isometric to

a sphere S2n+1(c) of radius c =
√

2(n+1)(4n+3)
r

, where r = 2nk+2
∑n

i=1 σi.
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