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ORTHOGONALLY ADDITIVE AND ORTHOGONALLY

QUADRATIC FUNCTIONAL EQUATION

Jung Rye Lee, Sung Jin Lee∗ and Choonkil Park

Abstract. Using the fixed point method, we prove the Ulam-Hyers
stability of the orthogonally additive and orthogonally quadratic
functional equation
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for all x, y, z with x ⊥ y, in orthogonality Banach spaces and in
non-Archimedean orthogonality Banach spaces.

1. Introduction and preliminaries

In 1897, Hensel [19] introduced a normed space which does not have
the Archimedean property. It turned out that non-Archimedean spaces
have many nice applications (see [12, 27, 28, 35]).

A valuation is a function | · | from a field K into [0,∞) such that
0 is the unique element having the 0 valuation, |rs| = |r| · |s| and the
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triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.
A field K is called a valued field if K carries a valuation. Throughout
this paper, we assume that the base field is a valued field, hence call it
simply a field. The usual absolute values of R and C are examples of
valuations.

Let us consider a valuation which satisfies a stronger condition than
the triangle inequality. If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,
then the function | · | is called a non-Archimedean valuation, and the
field is called a non-Archimedean field. Clearly |1| = | − 1| = 1 and
|n| ≤ 1 for all n ∈ N. A trivial example of a non-Archimedean valuation
is the function | · | taking everything except for 0 into 1 and |0| = 0.

Definition 1.1. ([34]) Let X be a vector space over a field K with a
non-Archimedean valuation | · |. A function ‖ · ‖ : X → [0,∞) is said
to be a non-Archimedean norm if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖ (r ∈ K, x ∈ X);
(iii) the strong triangle inequality

‖x+ y‖ ≤ max{‖x‖, ‖y‖}, ∀x, y ∈ X
holds. Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 1.2. (i) Let {xn} be a sequence in a non-Archimedean
normed space X. Then the sequence {xn} is called Cauchy if for a given
ε > 0 there is a positive integer N such that

‖xn − xm‖ ≤ ε

for all n,m ≥ N .
(ii) Let {xn} be a sequence in a non-Archimedean normed space X.

Then the sequence {xn} is called convergent if for a given ε > 0 there
are a positive integer N and an x ∈ X such that

‖xn − x‖ ≤ ε

for all n ≥ N . Then we call x ∈ X a limit of the sequence {xn}, and
denote by limn→∞ xn = x.

(iii) If every Cauchy sequence inX converges, then the non-Archimedean
normed space X is called a non-Archimedean Banach space.
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Assume that X is a real inner product space and f : X → R is
a solution of the orthogonal Cauchy functional equation f(x + y) =
f(x) + f(y), 〈x, y〉 = 0. By the Pythagorean theorem f(x) = ‖x‖2 is a
solution of the conditional equation. Of course, this function does not
satisfy the additivity equation everywhere. Thus orthogonal Cauchy
equation is not equivalent to the classic Cauchy equation on the whole
inner product space.

G. Pinsker [40] characterized orthogonally additive functionals on an
inner product space when the orthogonality is the ordinary one in such
spaces. K. Sundaresan [50] generalized this result to arbitrary Banach
spaces equipped with the Birkhoff-James orthogonality. The orthogonal
Cauchy functional equation

f(x+ y) = f(x) + f(y), x ⊥ y,

in which ⊥ is an abstract orthogonality relation, was first investigated by
S. Gudder and D. Strawther [18]. They defined ⊥ by a system consisting
of five axioms and described the general semi-continuous real-valued
solution of conditional Cauchy functional equation. In 1985, J. Rätz [47]
introduced a new definition of orthogonality by using more restrictive
axioms than of S. Gudder and D. Strawther. Moreover, he investigated
the structure of orthogonally additive mappings. J. Rätz and Gy. Szabó
[48] investigated the problem in a rather more general framework.

Let us recall the orthogonality in the sense of J. Rätz; cf. [47].
Suppose X is a real vector space with dimX ≥ 2 and ⊥ is a binary

relation on X with the following properties:
(O1) totality of ⊥ for zero: x ⊥ 0, 0 ⊥ x for all x ∈ X;
(O2) independence: if x, y ∈ X − {0}, x ⊥ y, then x, y are linearly
independent;
(O3) homogeneity: if x, y ∈ X, x ⊥ y, then αx ⊥ βy for all α, β ∈ R;
(O4) the Thalesian property: if P is a 2-dimensional subspace of X, x ∈
P and λ ∈ R+, which is the set of nonnegative real numbers, then there
exists y0 ∈ P such that x ⊥ y0 and x+ y0 ⊥ λx− y0.

The pair (X,⊥) is called an orthogonality space. By an orthogo-
nality normed space we mean an orthogonality space having a normed
structure.

Some interesting examples are
(i) The trivial orthogonality on a vector space X defined by (O1), and
for non-zero elements x, y ∈ X, x ⊥ y if and only if x, y are linearly
independent.
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(ii) The ordinary orthogonality on an inner product space (X, 〈., .〉) given
by x ⊥ y if and only if 〈x, y〉 = 0.
(iii) The Birkhoff-James orthogonality on a normed space (X, ‖.‖) de-
fined by x ⊥ y if and only if ‖x+ λy‖ ≥ ‖x‖ for all λ ∈ R.

The relation ⊥ is called symmetric if x ⊥ y implies that y ⊥ x for
all x, y ∈ X. Clearly examples (i) and (ii) are symmetric but example
(iii) is not. It is remarkable to note, however, that a real normed space
of dimension greater than 2 is an inner product space if and only if the
Birkhoff-James orthogonality is symmetric. There are several orthogo-
nality notions on a real normed space such as Birkhoff-James, Boussouis,
Singer, Carlsson, unitary-Boussouis, Roberts, Phythagorean, isosceles
and Diminnie (see [1]–[3], [7, 14, 23, 24]).

The stability problem of functional equations originated from the fol-
lowing question of Ulam [52]: Under what condition does there exist
an additive mapping near an approximately additive mapping? In 1941,
Hyers [20] gave a partial affirmative answer to the question of Ulam in
the context of Banach spaces. In 1978, Th.M. Rassias [42] extended
the theorem of Hyers by considering the unbounded Cauchy difference
‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p), (ε > 0, p ∈ [0, 1)).

The first author treating the stability of the quadratic equation was
F. Skof [49] by proving that if f is a mapping from a normed space
X into a Banach space Y satisfying ‖f(x + y) + f(x − y) − 2f(x) −
2f(y)‖ ≤ ε for some ε > 0, then there is a unique quadratic mapping
g : X → Y such that ‖f(x) − g(x)‖ ≤ ε

2
. P.W. Cholewa [8] extended

the Skof’s theorem by replacing X by an abelian group G. The Skof’s
result was later generalized by S. Czerwik [9] in the spirit of Ulam-
Hyers-Rassias. The stability problem of functional equations has been
extensively investigated by some mathematicians (see [10, 11, 21, 25, 39],
[43]–[46]).

R. Ger and J. Sikorska [17] investigated the orthogonal stability of the
Cauchy functional equation f(x+y) = f(x)+f(y), namely, they showed
that if f is a mapping from an orthogonality space X into a real Banach
space Y and ‖f(x+y)−f(x)−f(y)‖ ≤ ε for all x, y ∈ X with x ⊥ y and
some ε > 0, then there exists exactly one orthogonally additive mapping
g : X → Y such that ‖f(x)− g(x)‖ ≤ 16

3
ε for all x ∈ X.

The orthogonally quadratic equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y), x ⊥ y
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was first investigated by F. Vajzović [53] when X is a Hilbert space,
Y is the scalar field, f is continuous and ⊥ means the Hilbert space
orthogonality. Later, H. Drljević [15], M. Fochi [16], M.S. Moslehian
[31, 32] and Gy. Szabó [51] generalized this result. See also [33, 36].

Let X be a set. A function d : X ×X → [0,∞] is called a generalized
metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
We recall a fundamental result in fixed point theory.

Theorem 1.3. [4, 13] Let (X, d) be a complete generalized metric
space and let J : X → X be a strictly contractive mapping with Lips-
chitz constant α < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such
that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X |

d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [22] were the first to provide ap-
plications of stability theory of functional equations for the proof of new
fixed point theorems with applications. By using fixed point methods,
the stability problems of several functional equations have been exten-
sively investigated by a number of authors (see [5, 6, 26, 30, 37, 38, 41]).

This paper is organized as follows: In Section 2, we prove the Ulam-
Hyers stability of the orthogonally additive and orthogonally quadratic
functional equation (0.1) in orthogonality spaces for an odd mapping. In
Section 3, we prove the Ulam-Hyers stability of the orthogonally addi-
tive and orthogonally quadratic functional equation (0.1) in orthogonal-
ity spaces for an even mapping. In Section 4, we prove the Ulam-Hyers
stability of the orthogonally additive and orthogonally quadratic func-
tional equation (0.1) in non-Archimedean orthogonality spaces for an
odd mapping. In Section 5, we prove the Ulam-Hyers stability of the or-
thogonally additive and orthogonally quadratic functional equation (0.1)
in non-Archimedean orthogonality spaces for an even mapping.



6 J.R. Lee, S.J. Lee and C. Park

2. Ulam-Hyers stability of the orthogonally additive and or-
thogonally quadratic functional equation: an odd map-
ping case

Throughout this section, assume that (X,⊥) is an orthogonality space
and that (Y, ‖.‖Y ) is a real Banach space.

In this section, applying some ideas from [17, 21], we deal with the sta-
bility problem for the orthogonally additive and orthogonally quadratic
functional equation
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f(−x)− f(y)− f(−y)− f(z)− f(−z) = 0

for all x, y, z ∈ X with x ⊥ y in orthogonality spaces: an odd mapping
case.

If f is an odd mapping with Df(x, y, z) = 0, then
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Definition 2.1. A mapping f : X → Y is called an orthogonally
additive mapping if
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Theorem 2.2. Let ϕ : X3 → [0,∞) be a function such that there
exists 0 < α < 1 with

ϕ(x, y, z) ≤ 2αϕ
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2
,
z
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)
(2.1)

for all x, y, z ∈ X with x ⊥ y. Let f : X → Y be an odd mapping
satisfying

‖Df(x, y, z)‖Y ≤ ϕ(x, y, z)(2.2)
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for all x, y, z ∈ X with x ⊥ y. Then there exists a unique orthogonally
additive mapping L : X → Y such that

‖f(x)− L(x)‖Y ≤
α

2− 2α
ϕ (x, 0, 0)(2.3)

for all x ∈ X.

Proof. Putting y = z = 0 in (2.2), we get∥∥∥4f
(x
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2
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for all x ∈ X.
Consider the set

S := {h : X → Y }
and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖Y ≤ µϕ (x, 0, 0) , ∀x ∈ X} ,
where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete
(see [29]).

Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

2
g (2x)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖Y ≤ ϕ (x, 0, 0)

for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖Y =

∥∥∥∥1

2
g (2x)− 1

2
h (2x)

∥∥∥∥
Y

≤ αϕ (x, 0, 0)

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ αε. This means
that

d(Jg, Jh) ≤ αd(g, h)

for all g, h ∈ S.
It follows from (2.5) that d(f, Jf) ≤ α

2
.

By Theorem 1.3, there exists a mapping L : X → Y satisfying the
following:
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(1) L is a fixed point of J , i.e.,

L (2x) = 2L(x)(2.6)

for all x ∈ X. The mapping L is a unique fixed point of J in the set

M = {g ∈ S : d(h, g) <∞}.
This implies that L is a unique mapping satisfying (2.6) such that there
exists a µ ∈ (0,∞) satisfying

‖f(x)− L(x)‖Y ≤ µϕ (x, 0, 0)

for all x ∈ X;
(2) d(Jnf, L)→ 0 as n→∞. This implies the equality

lim
n→∞

1

2n
f (2nx) = L(x)

for all x ∈ X;
(3) d(f, L) ≤ 1

1−αd(f, Jf), which implies the inequality

d(f, L) ≤ α

2− 2α
.

This implies that the inequality (2.3) holds.
It follows from (2.1) and (2.2) that

‖DL(x, y, z)‖Y = lim
n→∞

1
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‖Df(2nx, 2ny, 2nz)‖Y
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for all x, y, z ∈ X with x ⊥ y. Since f is odd, L is odd. Hence
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+ L
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)
= 2L(x)

for all x, y, z ∈ X with x ⊥ y. So L : X → Y is an orthogonally additive
mapping. Thus L : X → Y is a unique orthogonally additive mapping
satisfying (2.3), as desired.

From now on, in corollaries, assume that (X,⊥) is an orthogonality
normed space.

Corollary 2.3. Let θ be a positive real number and p a real number
with 0 < p < 1. Let f : X → Y be an odd mapping satisfying

‖Df(x, y, z)‖Y ≤ θ(‖x‖p + ‖y‖p + ‖z‖p)(2.7)
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for all x, y, z ∈ X with x ⊥ y. Then there exists a unique orthogonally
additive mapping L : X → Y such that

‖f(x)− L(x)‖Y ≤
2p−1θ

2− 2p
‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y, z) =
θ(‖x‖p+‖y‖p+‖z‖p) for all x, y, z ∈ X with x ⊥ y. Then we can choose
α = 2p−1 and we get the desired result.

Theorem 2.4. Let f : X → Y be an odd mapping satisfying (2.2)
for which there exists a function ϕ : X3 → [0,∞) such that

ϕ(x, y, z) ≤ α

2
ϕ (2x, 2y, 2z)

for all x, y, z ∈ X with x ⊥ y. Then there exists a unique orthogonally
additive mapping L : X → Y such that

‖f(x)− L(x)‖Y ≤
1

2− 2α
ϕ (x, 0, 0)(2.8)

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof
of Theorem 2.2.

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(x

2

)
for all x ∈ X.

It follows from (2.4) that d(f, Jf) ≤ 1
2
. So

d(f, L) ≤ 1

2− 2α
.

Thus we obtain the inequality (2.8).
The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 2.5. Let θ be a positive real number and p a real number
with p > 1. Let f : X → Y be an odd mapping satisfying (2.7). Then
there exists a unique orthogonally additive mapping L : X → Y such
that

‖f(x)− L(x)‖Y ≤
2p−1θ

2p − 2
‖x‖p

for all x ∈ X.
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Proof. The proof follows from Theorem 2.4 by taking ϕ(x, y, z) =
θ(‖x‖p+‖y‖p+‖z‖p) for all x, y, z ∈ X with x ⊥ y. Then we can choose
α = 21−p and we get the desired result.

3. Ulam-Hyers stability of the orthogonally additive and or-
thogonally quadratic functional equation: an even map-
ping case

Throughout this section, assume that (X,⊥) is an orthogonality space
and that (Y, ‖.‖Y ) is a real Banach space.

In this section, applying some ideas from [17, 21], we deal with the
stability problem for the orthogonally additive and orthogonally qua-
dratic functional equation Df(x, y, z) = 0, given in the previous section,
in orthogonality spaces: an even mapping case.

If f is an even mapping with Df(x, y, z) = 0, then
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f(x) + 2f(z) for all x, z ∈ X. That is,

f is orthogonally quadratic and quadratic.

Definition 3.1. A mapping f : X → Y is called an orthogonally
quadratic mapping if
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for all x, y, z ∈ X with x ⊥ y.

Theorem 3.2. Let ϕ : X3 → [0,∞) be a function such that there
exists 0 < α < 1 with

ϕ(x, y, z) ≤ 4αϕ
(x

2
,
y

2
,
z

2

)
for all x, y, z ∈ X with x ⊥ y. Let f : X → Y be an even mapping
satisfying f(0) = 0 and (2.2). Then there exists a unique orthogonally
quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖Y ≤
α

1− α
ϕ(x, 0, 0)(3.1)
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for all x ∈ X.

Proof. Putting y = z = 0 in (2.2), we get∥∥∥4f
(x

2

)
− f(x)

∥∥∥
Y
≤ ϕ(x, 0, 0)(3.2)

for all x ∈ X, since x ⊥ 0. So∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥
Y

≤ 1

4
ϕ(2x, 0, 0) ≤ α · ϕ(x, 0, 0)(3.3)

for all x ∈ X.
By the same reasoning as in the proof of Theorem 2.2, one can obtain

an orthogonally quadratic mapping Q : X → Y defined by

lim
n→∞

1

4n
f (2nx) = Q(x)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of

Theorem 2.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
It follows from (3.3) that d(f, Jf) ≤ α. So

d(f,Q) ≤ α

1− α
.

So we obtain the inequality (3.1). Thus Q : X → Y is a unique orthog-
onally quadratic mapping satisfying (3.1), as desired.

Corollary 3.3. Let θ be a positive real number and p a real number
with 0 < p < 2. Let f : X → Y be an even mapping satisfying (2.7).
Then there exists a unique orthogonally quadratic mapping Q : X → Y
such that

‖f(x)−Q(x)‖Y ≤
2pθ

4− 2p
‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.2 by taking ϕ(x, y, z) =
θ(‖x‖p+‖y‖p+‖z‖p) for all x, y, z ∈ X with x ⊥ y. Then we can choose
α = 2p−2 and we get the desired result.
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Theorem 3.4. Let f : X → Y be an even mapping satisfying (2.2)
for which there exists a function ϕ : X3 → [0,∞) such that

ϕ(x, y, z) ≤ α

4
ϕ (2x, 2y, 2z)

for all x, y, z ∈ X with x ⊥ y. Then there exists a unique orthogonally
quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖Y ≤
1

1− α
ϕ (x, 0, 0)(3.4)

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof
of Theorem 2.2.

Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)
for all x ∈ X.

It follows from (3.2) that d(f, Jf) ≤ 1. So we obtain the inequality
(3.4).

The rest of the proof is similar to the proofs of Theorems 2.2 and
3.2.

Corollary 3.5. Let θ be a positive real number and p a real number
with p > 2. Let f : X → Y be an even mapping satisfying (2.7). Then
there exists a unique orthogonally quadratic mapping Q : X → Y such
that

‖f(x)−Q(x)‖Y ≤
2pθ

2p − 4
‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.4 by taking ϕ(x, y, z) =
θ(‖x‖p+‖y‖p+‖z‖p) for all x, y, z ∈ X with x ⊥ y. Then we can choose
α = 22−p and we get the desired result.

Let fo(x) = f(x)−f(−x)
2

and fe(x) = f(x)+f(−x)
2

. Then fo is an odd
mapping and fe is an even mapping such that f = fo + fe.

The above corollaries can be summarized as follows:

Theorem 3.6. Assume that (X,⊥) is an orthogonality normed space.
Let θ be a positive real number and p a real number with 0 < p < 1
(resp. p > 2). Let f : X → Y be a mapping satisfying f(0) = 0 and
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(2.7). Then there exist an orthogonally additive mapping L : X → Y
and an orthogonally quadratic mapping Q : X → Y such that

‖f(x)− L(x)−Q(x)‖Y ≤
(

2p

2− 2p
+

2p

4− 2p

)
θ‖x‖p

(resp. ‖f(x)− L(x)−Q(x)‖Y ≤
(

2p

2p − 2
+

2p

2p − 4

)
θ‖x‖p)

for all x ∈ X.

4. Ulam-Hyers stability of the orthogonally additive and or-
thogonally quadratic functional equation in non-Archimedean
orthogonality spaces: an odd mapping case

Throughout this section, assume that (X,⊥) is a non-Archimedean
orthogonality space and that (Y, ‖.‖Y ) is a real non-Archimedean Banach
space. Assume that |2| 6= 1.

In this section, applying some ideas from [17, 21], we deal with the
stability problem for the orthogonally additive and orthogonally qua-
dratic functional equation Df(x, y, x) = 0, given in the second section,
in non-Archimedean orthogonality spaces: an odd mapping case.

Theorem 4.1. Let ϕ : X3 → [0,∞) be a function such that there
exists 0 < α < 1 with

ϕ(x, y, z) ≤ |2|αϕ
(x

2
,
y

2
,
z

2

)
for all x, y, z ∈ X with x ⊥ y. Let f : X → Y be an odd mapping
satisfying

‖Df(x, y, z)‖Y ≤ ϕ(x, y, z)(4.1)

for all x, y, z ∈ X with x ⊥ y. Then there exists a unique orthogonally
additive mapping L : X → Y such that

‖f(x)− L(x)‖Y ≤
α

|2| − |2|α
ϕ (x, 0, 0)(4.2)

for all x ∈ X.

Proof. Putting y = z = 0 in (4.1), we get∥∥∥4f
(x

2

)
− 2f(x)

∥∥∥
Y
≤ ϕ(x, 0, 0)(4.3)
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for all x ∈ X, since x ⊥ 0. So∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥
Y

≤ 1

|2|2
ϕ(2x, 0, 0) ≤ α

|2|
ϕ(x, 0, 0)(4.4)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of

Theorem 2.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

2
g (2x)

for all x ∈ X.
It follows from (4.4) that d(f, Jf) ≤ α

|2| . Thus we obtain the inequality

(4.2).
The rest of the proof is similar to the proof of Theorem 2.2.

From now on, in corollaries, assume that (X,⊥) is a non-Archimedean
orthogonality normed space.

Corollary 4.2. Let θ be a positive real number and p a real number
with p > 1. Let f : X → Y be an odd mapping satisfying (2.7). Then
there exists a unique orthogonally additive mapping L : X → Y such
that

‖f(x)− L(x)‖Y ≤
|2|p−1θ
|2| − |2|p

‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 4.1 by taking ϕ(x, y, z) =
θ(‖x‖p+‖y‖p+‖z‖p) for all x, y, z ∈ X with x ⊥ y. Then we can choose
α = |2|p−1 and we get the desired result.

Theorem 4.3. Let f : X → Y be an odd mapping satisfying (4.1)
for which there exists a function ϕ : X3 → [0,∞) such that

ϕ(x, y, z) ≤ α

|2|
ϕ (2x, 2y, 2z)

for all x, y, z ∈ X with x ⊥ y. Then there exists a unique orthogonally
additive mapping L : X → Y such that

‖f(x)− L(x)‖Y ≤
1

|2| − |2|α
ϕ (x, 0, 0)(4.5)

for all x ∈ X.
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Proof. Let (S, d) be the generalized metric space defined in the proof
of Theorem 2.2.

Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(x

2

)
for all x ∈ X.

It follows from (4.3) that d(f, Jf) ≤ 1
|2| . So

d(f, L) ≤ 1

|2| − |2|α
.

Thus we obtain the inequality (4.5).
The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 4.4. Let θ be a positive real number and p a real number
with 0 < p < 1. Let f : X → Y be an odd mapping satisfying (2.7).
Then there exists a unique orthogonally additive mapping L : X → Y
such that

‖f(x)− L(x)‖Y ≤
|2|p−1θ
|2|p − |2|

‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 4.3 by taking ϕ(x, y, z) =
θ(‖x‖p+‖y‖p+‖z‖p) for all x, y, z ∈ X with x ⊥ y. Then we can choose
α = |2|1−p and we get the desired result.

5. Ulam-Hyers stability of the orthogonally additive and or-
thogonally quadratic functional equation in non-Archimedean
orthogonality spaces: an even mapping case

Throughout this section, assume that (X,⊥) is a non-Archimedean
orthogonality space and that (Y, ‖.‖Y ) is a real non-Archimedean Banach
space. Assume that |2| 6= 1.

In this section, applying some ideas from [17, 21], we deal with the
stability problem for the orthogonally additive and orthogonally qua-
dratic functional equation Df(x, y, z) = 0, given in the second section,
in non-Archimedean orthogonality spaces: an even mapping case.
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Theorem 5.1. Let ϕ : X3 → [0,∞) be a function such that there
exists 0 < α < 1 with

ϕ(x, y, z) ≤ |4|αϕ
(x

2
,
y

2
,
z

2

)
for all x, y, z ∈ X with x ⊥ y. Let f : X → Y be an even mapping satis-
fying (4.1). Then there exists a unique orthogonally quadratic mapping
Q : X → Y such that

‖f(x)−Q(x)‖Y ≤
α

1− α
ϕ(x, 0, 0)(5.1)

for all x ∈ X.

Proof. Putting y = z = 0 in (4.1), we get∥∥∥4f
(x

2

)
− f(x)

∥∥∥
Y
≤ ϕ(x, 0, 0)(5.2)

for all x ∈ X, since x ⊥ 0. So∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥
Y

≤ 1

|4|
ϕ(2x, 0, 0) ≤ α · ϕ(x, 0, 0)(5.3)

for all x ∈ X.
By the same reasoning as in the proof of Theorem 2.2, one can obtain

an orthogonally quadratic mapping Q : X → Y defined by

lim
n→∞

1

4n
f (2nx) = Q(x)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of

Theorem 2.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
It follows from (5.3) that d(f, Jf) ≤ α. So

d(f,Q) ≤ α

1− α
.

So we obtain the inequality (5.1). Thus Q : X → Y is a unique orthog-
onally quadratic mapping satisfying (5.1), as desired.
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Corollary 5.2. Let θ be a positive real number and p a real number
with p > 2. Let f : X → Y be an even mapping satisfying (2.7). Then
there exists a unique orthogonally quadratic mapping Q : X → Y such
that

‖f(x)−Q(x)‖Y ≤
|2|pθ

|2|2 − |2|p
‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 5.1 by taking ϕ(x, y, z) =
θ(‖x‖p+‖y‖p+‖z‖p) for all x, y, z ∈ X with x ⊥ y. Then we can choose
α = |2|p−2 and we get the desired result.

Theorem 5.3. Let f : X → Y be an even mapping satisfying (4.1)
and f(0) = 0 for which there exists a function ϕ : X3 → [0,∞) such
that

ϕ(x, y, z) ≤ α

|4|
ϕ (2x, 2y, 2z)

for all x, y, z ∈ X with x ⊥ y. Then there exists a unique orthogonally
quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖Y ≤
1

1− α
ϕ (x, 0, 0)(5.4)

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof
of Theorem 2.2.

Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)
for all x ∈ X.

It follows from (5.2) that d(f, Jf) ≤ 1. So we obtain the inequality
(5.4).

The rest of the proof is similar to the proofs of Theorems 2.2 and
5.1.

Corollary 5.4. Let θ be a positive real number and p a real number
with 0 < p < 2. Let f : X → Y be an even mapping satisfying (2.7).
Then there exists a unique orthogonally quadratic mapping Q : X → Y
such that

‖f(x)−Q(x)‖Y ≤
|2|pθ

|2|p − |2|2
‖x‖p
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for all x ∈ X.

Proof. The proof follows from Theorem 5.3 by taking ϕ(x, y, z) =
θ(‖x‖p+‖y‖p+‖z‖p) for all x, y, z ∈ X with x ⊥ y. Then we can choose
α = |2|2−p and we get the desired result.

Let fo(x) = f(x) − f(−x) and fe(x) = f(x) + f(−x). Then fo is an
odd mapping and fe is an even mapping such that 2f = fo + fe.

The above corollaries can be summarized as follows:

Theorem 5.5. Assume that (X,⊥) is a non-Archimedean orthogo-
nality normed space. Let θ be a positive real number and p a real number
with p > 2 (resp. 0 < p < 1). Let f : X → Y be a mapping satisfying
f(0) = 0 and (2.7). Then there exist an orthogonally additive mapping
L : X → Y and an orthogonally quadratic mapping Q : X → Y such
that

‖2f(x)− L(x)−Q(x)‖Y ≤ max
(
|2|p−1

|2|−|2|p ,
|2|p

|2|2−|2|p

)
2θ‖x‖p

(resp. ‖2f(x)− L(x)−Q(x)‖Y ≤ max
(
|2|p−1

|2|p−|2| ,
|2|p

|2|p−|2|2

)
2θ‖x‖p)

for all x ∈ X.
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