Korean J. Math. **28** (2020), No. 3, pp. 439–447 http://dx.doi.org/10.11568/kjm.2020.28.3.439

SECOND CLASSICAL ZARISKI TOPOLOGY ON SECOND SPECTRUM OF LATTICE MODULES

PRADIP GIRASE, VANDEO BORKAR^{*}, AND NARAYAN PHADATARE

ABSTRACT. Let M be a lattice module over a C-lattice L. Let $Spec^{s}(M)$ be the collection of all second elements of M. In this paper, we consider a topology on $Spec^{s}(M)$, called the second classical Zariski topology as a generalization of concepts in modules and investigate the interplay between the algebraic properties of a lattice module M and the topological properties of $Spec^{s}(M)$. We investigate this topological space from the point of view of spectral spaces. We show that $Spec^{s}(M)$ is always T_{0} -space and each finite irreducible closed subset of $Spec^{s}(M)$ has a generic point.

1. Introduction

The dual notion of prime submodules (i.e. second submodules) was introduced and studied by S. Yassemi in [19]. H. Ansari-Toroghy and F. Farshadifar studied the Zariski topology on second spectrum of a module over a commutative ring in [3]. The second classical Zariski topology on second spectrum of a module over a commutative ring was introduced and studied by H. Ansari-Toroghy et al. in [4].

The concept of a second element of a lattice module M over a C- lattice L was introduced and studied the Zariski topology on the second spectrum $Spec^{s}(M)$, i.e., the collection of all second elements of a lattice

Received December 25, 2019. Revised July 20, 2020. Accepted July 21, 2020.

²⁰¹⁰ Mathematics Subject Classification: 06D10, 06E10, 06F10.

Key words and phrases: Second element, second spectrum, second classical Zariski topology, second radical element.

^{*} Corresponding author.

[©] The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

module M over a C-lattice L by N. Phadatare et al. in [15]. In [11], P. Girase et al. studied the topology on classical prime spectrum of a lattice module over a C-lattice and in [6], V. Borkar et al. studied the classical Zariski topology on prime spectrum of a lattice module over a C-lattice.

As a generalization of second classical Zariski topology on second spectrum of a module over a commutative ring in [4], we introduce and study the dual notion of classical Zariski topology on prime spectrum of a lattice module over a C-lattice as a second classical Zariski topology on second spectrum of a lattice module M over a C-lattice L.

A lattice L is said to be *complete*, if for any subset S of L, we have $\forall S, \land S \in L$. A complete lattice L with least element 0_L and greatest element 1_L is said to be a *multiplicative lattice*, if there is defined a binary operation "." called multiplication on L satisfying the following conditions:

(1) a.b = b.a, for all $a, b \in L$;

(2) a.(b.c) = (a.b).c, for all $a, b, c \in L$;

(3) $a.(\vee_{\alpha}b_{\alpha}) = \vee_{\alpha}(a.b_{\alpha})$, for all $a, b_{\alpha} \in L$;

(4) $a.1_L = a$, for all $a \in L$.

Henceforth, a.b will be simply denoted by ab.

An element a in L is called *compact*, if $a \leq \bigvee_{\alpha \in I} b_{\alpha}$ (I is an indexed set) implies $a \leq b_{\alpha_1} \lor b_{\alpha_2} \lor \cdots \lor b_{\alpha_n}$ for some subset $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ of I. By a *C*-lattice, we mean a multiplicative lattice L, with least element 0_L and greatest element 1_L which is compact as well as multiplicative identity, that is generated under joins by a multiplicatively closed subset C of compact elements of L.

An element $a \in L$ is said to be *proper*, if $a < 1_L$. A proper element p of a multiplicative lattice L is said to be *prime*, if $ab \leq p$ implies $a \leq p$ or $b \leq p$ for $a, b \in L$. The collection of all prime elements of L is denoted by Spec(L).

The Zariski topology on the set Spec(L) of all prime elements in multiplicative lattices is being studied in [18] by Thakare, Manjarekar and Maeda and in [17], by Thakare and Manjarekar as a generalization of the Zariski topology of a commutative ring with unity.

A proper element m of a multiplicative lattice L is said to be *maximal*, if for every $x \in L$ with $m < x \leq 1_L$ implies $x = 1_L$.

A complete lattice M with smallest element 0_M and greatest element 1_M is said to be a *lattice module* over a multiplicative lattice L, or

440

L-module, if there is a multiplication between elements of M and L, denoted by $aN \in M$, for $a \in L$ and $N \in M$, which satisfies the following properties:

1. (ab)N = a(bN);

2.
$$(\vee_{\alpha}a_{\alpha})(\vee_{\beta}N_{\beta}) = (\vee_{\alpha\beta}a_{\alpha}N_{\beta});$$

- 3. $1_L N = N;$
- 4. $0_L N = 0_M$; for all $a, b, a_\alpha \in L$ and for all $N, N_\beta \in M$.

Let M be a lattice module over a C-lattice L. For $N \in M, b \in L$, denote $(N:b) = \vee \{K \in M | bK \leq N\}$. If $a, b \in L$, we write $(a:b) = \vee \{x \in L | bx \leq a\}$. If $A, B \in M$, then $(A:B) = \vee \{x \in L | xB \leq A\}$. An element $N \in M$ is said to be *compact*, if $N \leq \vee_{\alpha \in I} A_{\alpha}$ (I is an indexed set) implies $N \leq A_{\alpha_1} \vee A_{\alpha_2} \vee \cdots \vee A_{\alpha_n}$ for some subset $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ of I.

An element $N \in M$ is said to be *proper*, if $N < 1_M$. A proper element N of a lattice module M is said to be *prime*, if $aX \leq N$ implies $X \leq N$ or $a1_M \leq N$, i.e., $a \leq (N : 1_M)$ for every $a \in L$ and $X \in M$. The prime spectrum of a lattice module M is the set of all prime elements of M and it is denoted by Spec(M). In [5], S. Ballal and V. Kharat studied the Zariski topology over Spec(M). Also, in [10], F. Callialp et al. studied the Zariski topology over Spec(M) over a multiplicative lattice L.

A non-zero element $N \in M$ is said to be *second*, if for $a \in L$, either aN = N or $aN = 0_M$. An element $N < 1_M$ of M is said to be *maximal*, if $N \leq B$ implies either N = B or $B = 1_M, B \in M$. A non-zero element $K \neq 1_M$ of M is said to be *minimal*, if $0_M \leq N < K$ implies $N = 0_M, N \in M$.

Let M be a lattice module over a C-lattice L. Set $Spec^{s}(M) = \{S \in M | S \text{ is a second element of } M\}$. We call this set the second spectrum of M. For any element N of M, we define, $F(N) = \{S \in Spec^{s}(M) | S \leq N\}$. Note that, $F(0_{M})$ is an empty set and $F(1_{M}) = Spec^{s}(M)$. It is easy to see that for any family of elements $N_{i}(i \in I)$ of M, $\bigcap_{i \in I} F(N_{i}) = F(\bigwedge_{i \in I} N_{i})$. Thus if $\Upsilon(M)$ denotes the collection of all subsets F(N) of $Spec^{s}(M)$, then $\Upsilon(M)$ is closed under arbitrary intersections. In general $\Upsilon(M)$ is not closed under finite unions. A lattice module M is called *cotop*, if $\Upsilon(M)$ is closed under finite unions. In this case, $\Upsilon(M)$ is called the quasi-Zariski topology (see [15]).

Let N be an element of M. We define $G(N) = Spec^{s}(M) - F(N)$ and put $\mathcal{G}(M) = \{G(N) | N \in M\}$. Then we define a topology $\xi(M)$ on $Spec^{s}(M)$ by the subbasis $\mathcal{G}(M)$ and call it the second classical Zariski topology of M. In fact, $\xi(M)$ to be the collection U of all unions of finite intersections of elements of $\mathcal{G}(M)$.

Further all these concepts and for more information on multiplicative lattices, lattice modules and topology the reader may refer ([1, 2, 7, 12, 14, 16]).

2. Second Classical Zariski Topology

Let M be a lattice module over a C-lattice L and let $Spec^{s}(M)$ be equipped with the second classical Zariski topology. Let $Y \subseteq Spec^{s}(M)$, then Cl(Y) denotes the closure of Y in $Spec^{s}(M)$ and join of all elements of Y denoted by Z(Y). Note that, if $Y = \emptyset$, then $Z(Y) = 0_M$.

A topological space X is called irreducible if $X \neq \emptyset$ and every finite intersection of nonempty open sets of X is nonempty. A nonempty subset Y of a topological space X is called an irreducible set if the subspace Y of X is irreducible, i.e., if $Y \subseteq Y_1 \cup Y_2$, then $Y \subseteq Y_1$ or $Y \subseteq Y_2$, where Y_1 and Y_2 are closed subsets of X (see [8]).

Let Y be a closed subset of a topological space. An element $y \in Y$ is called a generic point of Y if $Y = Cl(\{y\})$. Note that, a generic point of the irreducible closed subset of a topological space is unique if the topological space is a T_0 -space.

LEMMA 2.1. Let M be a lattice module over a C-lattice L. If Y is a nonempty subset of $Spec^{s}(M)$, then $Cl(Y) = \bigcup_{S \in Y} F(S)$.

Proof. Suppose that Y is a nonempty subset of $Spec^{s}(M)$. Clearly, $Y \subseteq \bigcup_{S \in Y} F(S)$. Suppose that A is any closed subset of $Spec^{s}(M)$ such that $Y \subseteq A$. Thus $A = \bigcap_{k \in J} (\bigcup_{l=1}^{n_{k}} F(N_{kl}))$, for some $N_{kl} \in M$, $k \in J($ Indexed set), $n_{k} \in \mathbb{N}$. Let $S_{1} \in \bigcup_{S \in Y} F(S)$. Then $S_{1} \in F(S')$ for some $S' \in Y$ and therefore $S_{1} \leq S'$. Now, $S' \in Y \subseteq A$ and $A = \bigcap_{k \in J} (\bigcup_{l=1}^{n_{k}} F(N_{kl}))$, therefore for each $k \in J$, there exists $l \in$ $\{1, 2, \cdots, n_{k}\}$ such that $S' \in F(N_{kl})$ and therefore $S' \leq N_{kl}$, hence $S_{1} \leq$ $S' \leq N_{kl}$. It follows that $S_{1} \in F(N_{kl})$ and hence $S_{1} \in \bigcap_{k \in J} (\bigcup_{l=1}^{n_{k}} F(N_{kl})) =$ A. Hence, $\bigcup_{S \in Y} F(S) \subseteq A$. Thus $\bigcup_{S \in Y} F(S)$ is the smallest closed subset of $Spec^{s}(M)$ containing Y. Consequently, $Cl(Y) = \bigcup_{S \in Y} F(S)$.

COROLLARY 2.2. Let M be a lattice module over a C-lattice L. Then we have the following:

1. $Cl({S}) = F(S)$, for all $S \in Spec^{s}(M)$.

442

- 2. $S_1 \in Cl(\{S\})$ if and only if $S_1 \leq S$ if and only if $F(S_1) \subseteq F(S)$, for $S_1 \in Spec^s(M)$.
- 3. The set $\{S\}$ is closed in $Spec^{s}(M)$ if and only if S is a minimal second element of M.

Proof. (1) By Lemma 2.1, for $Y \subseteq Spec^{s}(M)$, we have $Cl(Y) = \bigcup_{S \in Y} F(S)$. Let $Y = \{S\}$, then $\bigcup_{S \in Y} F(S) = F(S)$. Hence, $Cl(\{S\}) = F(S)$.

(2) Suppose that $S_1 \in Cl(\{S\})$. Then by part (1), $S_1 \in Cl(\{S\}) = F(S)$, therefore $S_1 \leq S$ and $S_1 \leq S$ implies that $F(S_1) \subseteq F(S)$. Conversely, suppose that $F(S_1) \subseteq F(S)$. Since $S_1 \in F(S_1) \subseteq F(S)$, we have $S_1 \leq S$ and $S_1 \in F(S) = Cl(\{S\})$, by part (1).

(3) Suppose that S is a minimal second element of M and $S_1 \in Cl(\{S\})$. Then $S_1 \in Cl(\{S\}) = F(S)$ implies that $S_1 \leq S$. But S is minimal, therefore $S_1 = S$ and hence $Cl(\{S\}) = \{S\}$. Consequently, $\{S\}$ is closed in $Spec^s(M)$. Conversely, suppose that $\{S\}$ is closed in $Spec^s(M)$ and S is not minimal. Then there exists S_1 such that $S_1 \leq S$, which implies that $S_1 \in Cl(\{S\})$, by part (2). Since, $\{S\}$ is closed in $Spec^s(M)$, $S_1 \in Cl(\{S\}) = \{S\}$. Hence, $S_1 = S$. Consequently, S is a minimal second element of M.

LEMMA 2.3. Let M be a lattice module over a C-lattice L. If Y is a closed subset of $Spec^{s}(M)$, then $Y = \bigcup_{S \in Y} F(S)$.

Proof. Suppose that Y is a closed subset of $Spec^{s}(M)$. Clearly, $Y \subseteq \bigcup_{S \in Y} F(S)$. It is enough to show $\bigcup_{S \in Y} F(S) \subseteq Y$. To show this, we note that for every element S of Y, $F(S) = Cl(\{S\}) \subseteq Cl(Y) = Y$, by Corollary 2.2(1). Hence, $\bigcup_{S \in Y} F(S) \subseteq Y$. Therefore, $Y = \bigcup_{S \in Y} F(S)$.

LEMMA 2.4. Let M be a lattice module over a C-lattice L. If M is a cotop lattice module and Y is a subset of $Spec^{s}(M)$, then Cl(Y) = F(Z(Y)).

Proof. Suppose that M is a cotop lattice module and $Y \subseteq Spec^{s}(M)$. Then each closed subset is of the form of F(N) for some $N \in M$. Since for each $S \in Y$, $S \leq Z(Y)$, we have, $Y \subseteq F(Z(Y))$. Now, let F(N)be any closed subset of $Spec^{s}(M)$ containing Y. Then for each $S \in Y$, we have $S \in F(N)$, so that $S \leq N$. Hence, $Z(Y) \leq N$. Thus, if $S \in F(Z(Y))$, then $S \leq Z(Y) \leq N$. Hence $S \in F(N)$ and $F(Z(Y)) \subseteq$ F(N). Thus F(Z(Y)) is the smallest closed subset of $Spec^{s}(M)$ which contains Y. This shows that Cl(Y) = F(Z(Y)). \Box LEMMA 2.5. Let M be a lattice module over a C-lattice L. Then for each $S \in Spec^{s}(M)$, F(S) is irreducible.

Proof. Let $F(S) \subseteq X_1 \cup X_2$, where X_1 and X_2 are closed subsets of $Spec^s(M)$. Since $S \in F(S)$ and $F(S) \subseteq X_1 \cup X_2$, we have, $S \in X_1 \cup X_2$, which implies that either $S \in X_1$ or $S \in X_2$. Suppose that $S \in X_1$. Since X_1 is closed in $Spec^s(M)$, we have, $X_1 = \bigcap_{k \in J} (\bigcup_{l=1}^{n_k} F(N_{kl}))$, for some $N_{kl} \in M$, $k \in J$, $n_k \in \mathbb{N}$. Thus $S \in \bigcup_{l=1}^{n_k} F(N_{kl})$ for each $k \in J$. It follows that $F(S) \subseteq \bigcup_{l=1}^{n_k} F(N_{kl})$ for each $k \in J$. Hence, $F(S) \subseteq \bigcap_{k \in J} (\bigcup_{l=1}^{n_k} F(N_{kl})) = X_1$. Consequently, F(S) is irreducible.

THEOREM 2.6. Let M be a lattice module over a C-lattice L and Y be a subset of $Spec^{s}(M)$. If Z(Y) is a second element and $Z(Y) \in Cl(Y)$, then Y is irreducible.

Proof. Suppose that Z(Y) is a second element of M and $Z(Y) \in Cl(Y)$. Since for each $S \in Y$, $S \leq Z(Y)$, we have, $F(S) \subseteq F(Z(Y))$ for each $S \in Y$ by Corollary 2.2(2). Therefore, $\bigcup_{S \in Y} F(S) \subseteq F(Z(Y))$, that is, $Cl(Y) \subseteq F(Z(Y))$, by Lemma 2.1. Now, since Z(Y) is a second element and $Z(Y) \in Cl(Y)$, $F(Z(Y)) \subseteq Cl(Y)$. Consequently, Cl(Y) = F(Z(Y)). Now, let $Y \subseteq X_1 \cup X_2$, where X_1 and X_2 are closed subsets of $Spec^s(M)$. Then we have, $F(Z(Y)) = Cl(Y) \subseteq X_1 \cup X_2$. Since F(S) is irreducible for each $S \in Spec^s(M)$, by Lemma 2.5, F(Z(Y)) is irreducible. Therefore, $F(Z(Y)) \subseteq X_1$ or $F(Z(Y)) \subseteq X_2$. Hence, $Y \subseteq X_1$ or $Y \subseteq X_2$, consequently, Y is irreducible. \Box

DEFINITION 2.7. [16] Let M be a lattice module over a C-lattice Land N be an element of M. Then the *second radical* of N is defined to be the join of all second elements contained in N, that is, $\sqrt[s]{N} = \vee \{S \in Spec^s(M) | S \leq N\}$.

Note that, $\sqrt[s]{N} = 0_M$, if there is no second element contained in N. If $N = \sqrt[s]{N}$, then N is called a *second radical element*.

COROLLARY 2.8. Let M be a lattice module over a C-lattice L and N be an element of M. If $\sqrt[s]{N}$ is a second element of M, then the subset F(N) of $Spec^{s}(M)$ is irreducible.

Proof. Suppose that $\sqrt[s]{N}$ is a second element of M. By Lemma 2.5, F(S) is irreducible for each $S \in Spec^{s}(M)$, therefore $F(\sqrt[s]{N})$ is irreducible subset of $Spec^{s}(M)$. Clearly, for each N in M, $F(N) = F(\sqrt[s]{N})$. Hence, the subset F(N) of $Spec^{s}(M)$ is irreducible.

444

The following Lemma shows that for any lattice module M over a C-lattice L, $Spec^{s}(M)$ is always a T_{0} -space.

LEMMA 2.9. Let M be a lattice module over a C-lattice L. Then the following hold:

- 1. $Spec^{s}(M)$ is a T_{0} -space.
- 2. Every $S \in Spec^{s}(M)$ is a generic point of the irreducible closed subset F(S).
- 3. Every finite irreducible closed subset of $Spec^{s}(M)$ has a generic point.

Proof. (1) Suppose that $S, S_1 \in Spec^s(M)$. Then by Corollary 2.2(1), $Cl(\{S\}) = F(S), Cl(\{S_1\}) = F(S_1)$ and therefore $Cl(\{S\}) = Cl(\{S_1\})$ if and only if $F(S) = F(S_1)$ if and only if $S = S_1$ by Corollary 2.2(2). Now, by the fact that a topological space is a T_0 -space if the closures of distinct points are distinct, we conclude that $Spec^s(M)$ is a T_0 -space. (2) By Corollary 2.2(1), for each $S \in Spec^s(M), F(S) = Cl(\{S\})$. Hence, S is a generic point of the irreducible closed subset F(S). (3) Suppose that Y is an irreducible closed subset of $Spec^s(M)$ and $Y = \{S_1, S_2, \dots, S_n\}$, where $S_i \in Spec^s(M), n \in \mathbb{N}$. By Lemma 2.1, $Y = Cl(Y) = F(S_i) \sqcup F(S_0) \sqcup \dots \amalg F(S)$

 $Y = \{S_1, S_2, \dots, S_n\}, \text{ where } S_i \in Spec^s(M), n \in \mathbb{N}. \text{ By Lemma 2.1,} \\ Y = Cl(Y) = F(S_1) \cup F(S_2) \cup \dots \cup F(S_n). \text{ Since } Y \text{ is irreducible,} \\ Y = F(S_i), \text{ for some } i \ (1 \le i \le n). \text{ Hence, by part } (2), S_i \text{ is a generic } \\ \text{point of } F(S_i) = Y. \qquad \Box$

A topological space X is a spectral space if X is homeomorphic to Spec(S), with Zariski topology, for some commutative ring S. Spectral spaces have been characterized by Hochster (see [13]) as the topological spaces X which satisfy the following conditions.

- 1. X is a T_0 -space.
- 2. X is a quasi-compact.
- 3. The quasi-compact open subsets of X are closed under finite intersection and form an open basis.
- 4. Each irreducible closed subset of X has a generic point.

THEOREM 2.10. Let M be a lattice module over a C-lattice L with finite second spectrum. Then $Spec^{s}(M)$ is a spectral space(with second classical Zariski topology).

Proof. Since $Spec^{s}(M)$ is finite, by Lemma 2.9, $Spec^{s}(M)$ is a T_{0} -space and every irreducible closed subset of $Spec^{s}(M)$ has a generic point. Also, since $Spec^{s}(M)$ is finite, every subset of $Spec^{s}(M)$ is quasi-compact and the quasi-compact open subsets of $Spec^{s}(M)$ are closed under finite intersections(see [9]). Further $\mathbb{B} = \{G(N_{1}) \cap G(N_{2}) \cap \cdots \cap G(N_{n}) | N_{i} \in M, 1 \leq i \leq n \text{ for some } n \in \mathbb{N}\}$ is basis for $Spec^{s}(M)$ with the property that each basis element, in particular $G(0_{M}) = Spec^{s}(M)$, is quasicompact. Now, by Hochster's characterization of a spectral space, we conclude that $Spec^{s}(M)$ is a spectral space.

References

- F. Alarcon, D. D. Anderson and C. Jayaram, Some results on abstract commutative ideal theory, Period. Math. Hungar. 30 (1995) (1), 1–26.
- [2] E. A. Al-Khouja, Maximal elements and prime elements in lattice modules, Damascus Univ. Basic Sci. 19 (2003) (2), 9–21.
- [3] H. Ansari-Toroghy and F. Farshadifar, The Zariski topology on the second spectrum of a module, Algebra Colloq. 21 (2014) (4), 671–688.
- [4] H. Ansari-Toroghy, S. Keyvani and F. Farshadifar, The Zariski topology on the second spectrum of a module(II), Bull. Malays. Math. Sci. Soc. 39 (2016) (3), 1089–1103.
- [5] S. Ballal and V. Kharat, Zariski topology on lattice modules, Asian-Eur. J. Math. 8 (2015) (4), 1550066 (10 pp).
- [6] V. Borkar, P. Girase and N. Phadatare, Classical Zariski topology on prime spectrum of lattice modules, Journal of Algebra and Related Topics 6 (2018) (2), 1–14.
- [7] V. Borkar, P. Girase and N. Phadatare, Zariski second radical elements of lattice modules, Asian-Eur. J. Math., doi:10.1142/S1793557121500558.
- [8] N. Bourbaki, Algebre Commutative, Chap 1-2, Hermann, Paris, 1961.
- [9] N. Bourbaki, *Elements of Mathematics, General topology*, Part 1, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1966.
- [10] F. Callialp, G. Ulucak and U. Tekir, On the Zariski topology over an L-Module M, Turkish J. Math. 41 (2017) (2), 326–336.
- [11] P. Girase, V. Borkar and N. Phadatare, On the classical prime spectrum of lattice modules, Int. Elect. J. Algebra 25 (2019), 186–198.
- [12] P. Girase, V. Borkar and N. Phadatare, Zariski prime radical elements of lattice modules, Southeast Asian Bull. Math. 44 (2020) (3), 335–344.
- [13] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60.
- [14] J. R. Munkres, *Topology: a First Course*, Prentice-Hall, Inc. Eglewood Cliffs, New Jersey, 1975.
- [15] N. Phadatare, S. Ballal and V. Kharat, On the second spectrum of lattice modules, Discuss. Math. Gen. Algebra and Appl. 37 (2017) (1), 59–74.
- [16] N. Phadatare and V. Kharat, On the second radical elements of lattice modules, Tbilisi Math. J. 11 (2018) (4), 165–173.

- [17] N. K. Thakare and C. S. Manjarekar, Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character, Algebra and its applications(New Delhi, 1981), Lecture Notes in Pure and Appl. Math., 91, Dekker, New York, (1984), 256–276.
- [18] N. K. Thakare, C. S. Manjarekar and S. Maeda, Abstract spectral theory II:minimal characters and minimal spectrums of multiplicative lattices, Acta Sci. Math. (Szeged) 52 (1988) (1-2), 53–67.
- [19] S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno), 37 (2001), 273–278.

Pradip Girase

Department of Mathematics, K. K. M. College Manwath, Dist-Parbhani(M.S.)-431505, India. *E-mail*: pgpradipmaths22@gmail.com

Vandeo Borkar

Department of Mathematics, Yeshwant Mahavidyalaya Nanded(M.S.)-431602, India. *E-mail*: borkarvc@gmail.com

Narayan Phadatare

Department of Mathematics Savitribai Phule Pune University, Pune(M.S.), India. *E-mail*: a9999phadatare@gmail.com