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A NOTE ON THE MULTIFRACTAL
HEWITT-STROMBERG MEASURES IN A

PROBABILITY SPACE

Bilel Selmi

Abstract. In this note, we investigate the multifractal analogues
of the Hewitt-Stromberg measures and dimensions in a probability
space.

1. Introduction

The notion of dimension is fundamental in the study of fractals. Var-
ious definitions of dimension have been proposed, such as the Haus-
dorff dimension, the packing dimension and the modified lower and
upper box dimensions etc. Unlike the Hausdorff and packing dimen-
sions, the modified lower and upper box dimensions are not defined in
terms of measures. Hewitt-Stromberg measures were introduced by He-
witt and Stromberg in [21]. Since then, they have been investigated
by several authors, highlighting their importance in the study of local
properties of fractals and products of fractals. One can cite, for exam-
ple [2, 3, 19, 20, 22, 27, 28, 34, 35]. In particular, Edgar’s textbook [17]
provides an excellent and systematic introduction to these measures,
which also appears explicitly, for example, in Pesin’s monograph [29]
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and implicitly in Mattila’s text [26]. The purpose of this paper is to
define and study a class of natural multifractal generalizations of the
Hewitt-Stromberg measures in a probability space.

A function g : (0,+∞) → (0,+∞) is called a dimension function if
g is increasing, right continuous and lim

r→0
g(r) = 0. Let X be a metric

space, E ⊆ X. The Hausdorff measure associated with a dimension
function g is defined, for ε > 0, as follows

H g
ε (E) = inf

{∑
i

g
(
diam(Ei)

)
| E ⊆

⋃
i

Ei, diam(Ei) < ε

}
.

This allows to define the g-dimensional Hausdorff measure H g(E) of E
by

H g(E) = sup
ε>0

H g
ε (E).

The packing measure with a dimension function g is defined, for ε > 0,
as follows

P
g

ε(E) = sup

{∑
i

g
(

2ri

)}
,

where the supremum is taken over all closed balls
(
C(xi, ri)

)
i
such that

ri ≤ ε and with xi ∈ E and C(xi, ri) ∩ C(xj, rj) = ∅ for i 6= j. The
g-dimensional packing pre-measure P

g
(E) of E is now defined by

P
g
(E) = inf

ε>0
P

g

ε(E).

This makes us able to define the g-dimensional packing measure Pg(E)
of E as

Pg(E) = inf

{∑
i

P
g
(Ei) | E ⊆

⋃
i

Ei

}
.

While Hausdorff and packing measures are defined using coverings and
packings by families of sets with diameters less than a given positive
number ε, say, the Hewitt-Stromberg measures are defined using pack-
ings of balls with the same diameter ε. The Hewitt-Stromberg pre-
measures are defined as follows,

U
g
(E) = lim inf

r→0
Mr(E) g(2r)
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and
V
g
(E) = lim sup

r→0
Mr(E) g(2r),

where the packing number Mr(E) of E is given by

Mr(E) = sup
{
]{I} |

(
C(xi, ri)

)
i∈I

is a family of closed balls with

xi ∈ E and C(xi, ri) ∩ C(xj, rj) = ∅ for i 6= j
}
.

Now, we define the lower and upper g-dimensional Hewitt-Stromberg
measures, which we denote respectively by U g(E) and V g(E), as follows

U g(E) = inf

{∑
i

U
g
(Ei) | E ⊆

⋃
i

Ei

}
and

V g(E) = inf

{∑
i

V
g
(Ei) | E ⊆

⋃
i

Ei

}
.

We recall the basic inequalities satisfied by the Hewitt-Stromberg, the
Hausdorff and the packing measure (see [22,27])

U
g
(E) ≤ V

g
(E) ≤P

g
(E)

and
H g(E) ≤ U g(E) ≤ V g(E) ≤Pg(E).

In Euclidean space Rn there is no generally accepted definition of a
fractal, even though fractal sets are widely used as models for many phys-
ical phenomena. The idea behind these models is that of self-similarity
or affineness which is based on the linear structure of Rn. These and
other geometrical notions have no obvious meaning in an abstract prob-
ability space. Then, Billingsley [5,6], and Dai et al., in [8], have defined
the Hausdorff measure and the packing measure in a probability space.
Y. Li et al., in [11, 12] were motivated by those researches. They ap-
plied the ideas developed in [5,6,8] to generalize the Hausdorff measure
and the packing measure and gave the relative multifractal formalism
with respect to the relative multifractal Hausdorff measure and packing
measure in a probability space. Other works carried in this sense pre-
sented many valuable results on the same subject and applications see
for example [1, 4, 7, 9, 10, 13–16,23–25,30–33].

In this paper, we construct the multifractal analogues of the Hewitt-
Stromberg measures lying between relative Hausdorff measure and the
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relative packing measure in a probability space which determine the
modified lower and upper relative box-dimension. We also compare the
modified lower and upper relative box-dimension with the relative mul-
tifractal dimensions in a probability space. In particular, the relative
packing dimension is equal to the modified upper relative box-dimension.

2. Preliminaries

Let we start by defining the relative multifractal Hausdorff and the
packing measure in a probability space (see [11–13]). We start with a
fixed stochastic process

{
Xn | n ∈ N

}
on a probability space

(
Ω,F , ν

)
taking values in a finite or countable state space S. The n-cylinder C is
defined by

C =
{
ω ∈ Ω | Xi(ω) = ai, i = 1, 2, ..., n

}
where ai ∈ S, i = 1, 2, ..., n. For each ω ∈ Ω there is a unique n-cylinder
set, denoted by In(ω), which contains ω. Thus

In(ω) =
{
ω′ ∈ Ω | Xi(ω

′) = Xi(ω), i = 1, 2, ..., n
}
.

We assume that the process is F -measurable, that is that C ⊆ F , where
C is the class of all cylinder sets. Many details of classical proofs are
greatly simplified because C is nested, that is, given C1, C2 ∈ C, then
either C1 ⊆ C2 or C2 ⊆ C1 or C1 ∩ C2 = ∅. We use sets in C for
both covering and packing. It is worth observing that we can use C to
introduce a pseudo metric in Ω. Given ω, ω′ ∈ Ω, let I0(ω) = Ω for all
ω, and

ρ(ω, ω′) = 2− sup
{
k∈N, Ik(ω)=Ik(ω′)

}
= 2−n.

We allow n = +∞ in the definition, so that ρ(ω, ω′) = 0 if ω, ω′ are not
distinguished by the sets of C. The closure of E ⊂ Ω is therefore

E =
{
ω | ρ(ω,E) = 0

}
, where ρ(ω,E) = inf

{
ρ(ω, ω′) | ω′ ∈ E

}
,

then it is easy to check that E ∈ σ(C), the sigma field generated by the
cylinder sets. σ(C) plays the role of Borel sets in the topology generated
by the metric ρ. The sets of C are both open and closed in this topology,
and each In(ω) can be considered as closed ball of radius 2−n centered
at ω (see [8–10]).



The Hewitt-Stromberg measures in a probability space 327

Definition 2.1. [11, 12] We say that ν is a non-atomic (σ(C)-
continuous) measure, if

lim
n→+∞

ν(In(ω)) = 0, for all ω ∈ Ω.

For E ⊆ Ω and δ > 0, we say that a collection
(
Ci

)
i∈N

is a centered
δ-packing of E if Ci is of the form Ini(ωi) with ωi ∈ E, ν(Ci) < δ and
Ci ∩ Cj = ∅ for all i 6= j. Similarly, we say that

(
Ci

)
i∈N

is a centered
δ-covering of E if Ci is of the form Ini(ωi) with ωi ∈ E, ν(Ci) < δ and
E ⊆

⋃
i

Ci.

In this paper, we will assume that ν is non-atomic. Let E ⊆ Ω and
δ > 0, suppose µ is a probability measure on (Ω,F ). For q, t ∈ R, we
define

P
q,t

µ,ν,δ(E)

= sup

{∑
i

µ
(
Ci
)q
ν
(
Ci
)t | (Ci)

i
is a centered δ-packing of E

}
.

The relative multifractal packing pre-measure is then given by

P
q,t

µ,ν(E) = inf
δ>0

P
q,t

µ,ν,δ(E).

In a similar way, we define

H
q,t

µ,ν,δ(E)

= inf

{∑
i

µ
(
Ci
)q
ν
(
Ci
)t | (Ci)

i
is a centered δ-covering of E

}
.

The relative multifractal Hausdorff pre-measure is defined by

H
q,t

µ,ν(E) = sup
δ>0

H
q,t

µ,ν,δ(E).

with the conventions 0q =∞ for q ≤ 0 and 0q = 0 for q > 0.
H

q,t

µ,ν is σ-subadditive but not increasing (it is easy to check that if
A ⊆ B, then a centered δ-covering of B is not necessarily a centered
δ-covering of A, thus H

q,t

µ,ν is not necessarily monotone) and P
q,t

µ,ν is
increasing but not σ-subadditive. That’s why Dai et al. in [11, 12]
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introduced the following modifications on the relative Hausdorff and
packing measures H q,t

µ,ν and Pq,t
µ,ν ,

H q,t
µ,ν (E) = sup

F⊆E
H

q,t

µ,ν(F ) and Pq,t
µ,ν(E) = inf

E⊆
⋃
i Ei

∑
i

P
q,t

µ,ν(Ei).

The functions H q,t
µ,ν and Pq,t

µ,ν are outer measures. An important
feature of the Hausdorff and packing measures is that

H
q,t

µ,ν ≤H q,t
µ,ν ≤Pq,t

µ,ν ≤P
q,t

µ,ν .

The measure H q,t
µ,ν is of course a multifractal generalization of the Billings-

ley’s Hausdorff measure (see [5, 6]), whereas Pq,t
µ,ν is a multifractal gen-

eralization of the packing measure (see [8]) in a probability space. The
measures H q,t

µ,ν and Pq,t
µ,ν and the pre-measure P

q,t

µ,ν assign in the usual
way a multifractal dimensions to each subset E of supp µ∩supp ν. They
are respectively denoted by bqµ,ν(E), Bq

µ,ν(E) and ∆q
µ,ν(E). More pre-

cisely, we have

bqµ,ν(E) = inf
{
t ∈ R | H q,t

µ,ν (E) = 0
}

= sup
{
t ∈ R | H q,t

µ,ν (E) = +∞
}
,

Bq
µ,ν(E) = inf

{
t ∈ R | Pq,t

µ,ν(E) = 0
}

= sup
{
t ∈ R | Pq,t

µ,ν(E) = +∞
}
,

and

∆q
µ,ν(E) = inf

{
t ∈ R | P

q,t

µ,ν(E) = 0
}

= sup
{
t ∈ R | P

q,t

µ,ν(E) = +∞
}
.

It is also readily seen that

bqµ,ν(E) ≤ Bq
µ,ν(E) ≤ ∆q

µ,ν(E).

For convenience, we write

b(q) := bµ,ν(q) = bqµ,ν(supp µ ∩ supp ν),

B(q) := Bµ,ν(q) = Bq
µ,ν(supp µ ∩ supp ν)

and
Λ(q) := Λµ,ν(q) = ∆q

µ,ν(supp µ ∩ supp ν).



The Hewitt-Stromberg measures in a probability space 329

In fact, it is easily seen that the following holds for t ≥ 0 and E ⊂ Ω,

Ltν(E) ≤H 0,t
µ,ν (E), P t

ν(E) = P0,t
µ,ν(E) and P

t

ν(E) = P
0,t

µ,ν(E)

where Ltν denotes the t-dimensional Hausdorff measure with respect to
ν (see [5, 6]), P t

ν denotes the t-dimensional packing measure and P
t

ν

denotes the t-dimensional pre-packing measure with respect to ν (see
[8]). In particular, we have

dimν(E) ≤ b0µ,ν(E), Dimν(E) = B0
µ,ν(E) and ∆ν(E) = ∆0

µ,ν(E).

3. Main results

3.1. The multifractal Hewitt-Stromberg measures. The Hewitt-
Stromberg measure has recently received some interest in the fractal
geometric community and it is both natural and timely to investigate
multifractal analogues of this measure. Let q, t ∈ R, µ ∈P(Ω). We will
now construct the multifractal analogues of Hewitt-Stromberg measures
Hq,t
µ,ν and P

q,t
µ,ν in a probabilistic setting that are analogues to Billingley’s

classical results for the Hausdorff and packing measures in [5, 6, 8]. For
E ⊆ Ω, the pre-measure of E is defined by

Cq,t
µ,ν(E) = lim sup

δ→0
Sqµ,ν,δ(E) δt,

where

Sqµ,ν,δ(E) = sup
{∑

i

µ
(
Ci
)q | Ci ∩ Ci = ∅, i 6= j,

δ

2
≤ ν(Ci) < δ, Ci = In(ω) with ω ∈ E

}
.

It is readily seen that Cq,t
µ,ν is increasing and Cq,t

µ,ν(∅) = 0 but it is not σ-
additive. For this we introduce the outer measure P q,t

µ,ν-measure defined
by

P q,t
µ,ν(E) = inf

{∑
i

Cq,t
µ,ν(Ei) | E ⊆ ∪iEi

}
.

In a similar way we define

Lq,tµ,ν(E) = lim inf
δ→0

T qµ,ν,δ(E) δt,
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where
T qµ,ν,δ(E) =

inf

{∑
i

µ
(
Ci
)q | E ⊆ ∪iCi, δ

2
≤ ν(Ci) < δ; Ci = In(ω) with ω ∈ E

}
.

Since Lq,tµ,ν is not increasing and not countably subadditive, one needs a
standard modification to get an outer measure. Hence we modify the
definition to

H
q,t

µ,ν(E) = sup
F⊆E

L
q,t

µ,ν(F )

and

Hq,t
µ,ν(E) = inf

{∑
i

H
q,t

µ,ν(Ei) | E ⊆ ∪iEi

}
.

Our first main result describes some of the basic properties of the
multifractal Hewitt-Stromberg measures including the fact thatHq,t

µ,ν and
P q,t
µ,ν are outer measures and summarises the basic inequalities satisfied

by the multifractal Hewitt-Stromberg measures, the relative multifractal
Hausdorff measure and the relative multifractal packing measure.

Theorem 3.1. Let q, t ∈ R and E ⊆ Ω. Then
1. the set functions Hq,t

µ,ν and P q,t
µ,ν are outer measures.

2. There exist φ∗ ≥ φ∗ > 0, such that for any E ⊆ Ω

φ∗H
q,t
µ,ν (E) ≤ Hq,t

µ,ν(E) ≤ P q,t
µ,ν(E) ≤ φ∗Pq,t

µ,ν(E).

3.2. Relative modified box-counting dimension in a probability
space. We will now define the lower and upper relative multifractal box-
dimension in a probability space. For any subset E of Ω and q ∈ R, we
define

dimq,B
µ,ν (E) = inf

{
t ∈ R | H

q,t

µ,ν(E) = 0
}

= sup
{
t ∈ R | H

q,t

µ,ν(E) = +∞
}

and

dim
q,B

µ,ν (E) = inf
{
t ∈ R | Cq,t

µ,ν(E) = 0
}

= sup
{
t ∈ R | Cq,t

µ,ν(E) = +∞
}
.
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Remark 3.1. It is worth observing that dimq,B
µ,ν and dim

q,B

µ,ν are mono-
tone, but not σ-stable.

The multifractal Hewitt-Stromberg measures Hq,t
µ,ν and P q,t

µ,ν assign in
the usual way a dimension to each set E of Ω called the modified lower
and upper relative box-dimension. They are respectively denoted by
dimq,MB

µ,ν (E) and dim
q,MB

µ,ν (E)

dimq,MB
µ,ν (E) = inf

{
t ∈ R | Hq,t

µ,ν(E) = 0
}

= sup
{
t ∈ R | Hq,t

µ,ν(E) = +∞
}

and

dim
q,MB

µ,ν (E) = inf
{
t ∈ R | P q,t

µ,ν(E) = 0
}

= sup
{
t ∈ R | P q,t

µ,ν(E) = +∞
}
.

For convenience, we write

τ(q) := τµ,ν(q) = dimq,MB
µ,ν (supp µ ∩ supp ν)

and
τ(q) := τµ,ν(q) = dim

q,MB

µ,ν (supp µ ∩ supp ν).

Remark 3.2. Clearly dimq,MB
µ,ν and dim

q,MB

µ,ν are monotone and σ-
stable in the sense of [5, 8]. It is clear that from Theorem 3.1 one has

bqµ,ν(E) ≤ dimq,MB
µ,ν (E) ≤ dim

q,MB

µ,ν (E) ≤ Bq
µ,ν(E) ≤ ∆q

µ,ν(E).

In addition, if q = 0 we deduce that

0 ≤ dimν(E) ≤ dim0,MB
µ,ν (E) ≤ dim

0,MB

µ,ν (E) ≤ Dimν(E) ≤ ∆ν(E) ≤ 1.

Theorem 3.2. For any subset E of Ω and q ∈ R, we have

1. dimq,B
µ,ν (E) = sup

F⊆E
lim inf
δ→0

log T qµ,ν,δ(F )

− log δ
.

2. dim
q,B

µ,ν (E) = lim sup
δ→0

logSqµ,ν,δ(E)

− log δ
.

There are ways of overcoming the difficulties of relative box-dimension
outlined in Theorem 3.4. However, they may not at first seem appealing
since they re-introduce all the difficulties of calculation associated with
the relative multifractal Hausdorff dimension. For E a subset of Ω we can
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try to decompose E into a countable number of pieces E1, E2, ... in such
a way that the largest piece has as small a dimension as possible. This
idea leads to the following relative modified box-counting dimensions :

Theorem 3.3. For any subset E of Ω and q ∈ R, we have

1. dimq,MB
µ,ν (E) = inf

{
sup
i

dimq,B
µ,ν (Ei) | E ⊆

⋃
i

Ei and Ei ⊆ Ω

}
.

2. dim
q,MB

µ,ν (E) = inf

{
sup
i

dim
q,B

µ,ν (Ei) | E ⊆
⋃
i

Ei and Ei ⊆ Ω

}
.

In the following theorem, we compare the upper relative box-dimension
and the modified upper relative box-dimension with the relative multi-
fractal packing and pre-packing dimensions in a probability space.

Theorem 3.4. For any subset E of Ω and q ≤ 1, we have

1. dim
q,B

µ,ν (E) = ∆q
µ,ν(E).

2. dim
q,MB

µ,ν (E) = Bq
µ,ν(E).

Remark 3.3. The first assertion of Theorem 3.4 gives the relevant
version of the definitions found in [12, Proposition 3.2].

Example : For α, β ≥ 0, let us introduce the fractal sets

E(β) =

{
ω ∈ supp µ ∩ supp ν | lim sup

n→+∞

log µ
(
In(ω)

)
log ν

(
In(ω)

) ≤ β

}
,

E(α) =

{
ω ∈ supp µ ∩ supp ν | lim inf

n→+∞

log µ
(
In(ω)

)
log ν

(
In(ω)

) ≥ α

}
,

and
E(α, β) = E(α) ∩ E(β), E(α) = E(α) ∩ E(α).

Let q ∈ R and suppose that H q,τ(q)
µ,ν

(
supp µ ∩ supp ν

)
> 0. Then,

dimν

(
E
(
−B′r(q),−B′l(q)

))
≥

 −qB
′
r(q) + τ(q), if q ≥ 0

−qB′l(q) + τ(q), if q ≤ 0.

In particular, if B is differentiable at q and α = −B′(q), then we have

Dimν

(
E(α)

)
= dimν

(
E(α)

)
= B∗(α) = τ ∗(α) = τ ∗(α) = b∗(α),
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where f ∗(α) = inf
β

(
αβ + f(β)

)
denotes the Legendre transform of the

function f. For more details, the reader can be referred to [11].

Remark 3.4. It is instructive also to consider the special case q =
0 since the relative multifractal Hausdorff measure is the Billingsley’s
Hausdorff φ-measure [5] and the relative multifractal packing measure
is the packing φ-measure introduced by Dai and Taylor in [8] where the
function
φ := ϕt : [0,+∞)→ [0,+∞] is defined by ϕ0(x) = 0 and

ϕt(x) =



∞ for x = 0

xt for x > 0
for t < 0,

0 for x = 0

xt for x > 0
for t > 0.

The following example is constructed in a similar way as in [5, 8].
Example : In this example, we specialize Ω to the unit interval [0, 1]
with the Lebesgue measure. Whenever S is a finite set of s elements
0, 1, 2, ..., s − 1 and the process {Xn} consists of independent random
variables taking each of these values with probability s−1, the obvious
mapping using expansions to base s provides a connection between the
theories of this paper and the usual definitions in R. We exploit this
connection to show that certain exceptional sets are fractals, and we can
determine their dimensions. More specifically, given Ω = [0, 1], and take
F to be the class of Borel subsets, ν to be Lebesgue measure, and µ
to be probability measure on (Ω,F ) with supp µ = [0, 1]. For a fixed
integer s ≥ 2, ω ∈ Ω, let

ω =
+∞∑
i=1

Xi(ω)s−i

be the nonterminating expansion of ω to base s. Then {X1, X2, ...}
becomes a stochastic process taking values in S = {0, 1, 2, ..., s−1}, and
In(ω) becomes a half-open interval of length s−n. We define independent
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random variables

Yi(ω) =


1 with probability

1

2
,

−1 with probability
1

2
,

and

Sn(ω) =


n∑
i=1

Yi(ω) if n = 1, 2, ...,

0 if n = 0.

Then
{
Sn
}
n
is called a simple random walk on the integer lattice. The

strong law of large numbers implies that

lim
n→+∞

Sn(ω)

n
= 0 a.s.

In particular, if A is a subset of

B =

{
ω ∈ supp µ ∩ supp ν | lim

n→+∞

Sn(ω)

n
6= 0

}
,

then A has measure zero and −1 ≤ Sn(ω)

n
≤ 1. Now, we consider the

set

E(α) =

{
ω ∈ supp µ ∩ supp ν | lim

n→+∞

Sn(ω)

n
= α

}
.

It is clear that E(α) ⊆ B for all −1 < α < 0. We therefore conclude
that ν(E(α)) = 0 and

dimν(E(α)) = dim0,MB
µ,ν (E(α)) = dim

0,MB

µ,ν (E(α)) = Dimν(E(α)) = ψ(α),

where

ψ(α) = 1− 1

2
(1 + α) log2(1 + α)− 1

2
(1− α) log2(1− α).

4. Proof of the main results

4.1. Proof of Theorem 3.1.
1. These properties follow easily from the definitions.
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2. Let F ⊆ E and δ > 0. Let
(
Ci

)
i
⊆ C be a centered δ-covering of

F with
δ

2
≤ ν(Ci) < δ. Then

H
q,t

µ,ν,δ(F ) ≤
∑
i

µ(Ci)
qν(Ci)

t

and
H

q,t

µ,ν,δ(F ) ≤ max(1, 2−t)T qµ,ν,δ(F )δt.

It follows immediately that

φ∗H
q,t

µ,ν(F ) ≤ Lq,tµ,ν(F ) ≤ H
q,t

µ,ν(F ).

Let (Fi)i ⊆ Ω such that F ⊆
⋃
i

Fi,

φ∗H
q,t

µ,ν(F ) ≤
∑
i

H
q,t

µ,ν(Fi)

and
φ∗H

q,t

µ,ν(F ) ≤ Hq,t
µ,ν(F ) ≤ Hq,t

µ,ν(E).

It follows immediately from the definitions that φ∗H q,t
µ,ν (E) ≤ Hq,t

µ,ν(E).

Take δ > 0. Let
(
Ci

)
i
⊆ C be a centered δ-covering of F ⊆ E

with
δ

2
≤ ν(Ci) < δ. Since C is net, we may suppose that

(
Ci
)
i
is

disjoint. So
(
Ci
)
i
is a δ-packing of F , then

T qµ,ν,δ(F ) ≤
∑
i

µ(Ci)
q ≤ Sqµ,ν,δ(F ).

Also observe that it follows from the definitions that

Lq,tµ,ν(F ) ≤ Cq,t
µ,ν(F ) ≤ Cq,t

µ,ν(E) and H
q,t

µ,ν(E) ≤ Cq,t
µ,ν(E).

We therefore conclude

Hq,t
µ,ν(E) ≤ P q,t

µ,ν(E).

Now, let E ⊆ Ω, then, we have

P
q,t

µ,ν(E) ≥ min(1, 2−t)Cq,t
µ,ν(E)(4.1)
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and

φ∗Pq,t
µ,ν(E) = φ∗ inf

{∑
i

P
q,t

µ,ν(Ei) | E ⊆
⋃
i

Ei

}

≥ inf

{∑
i

Cq,t
µ,ν(Ei) | E ⊆

⋃
i

Ei

}
= P q,t

µ,ν(E).

�

4.2. Proof of Theorem 3.2. Let E be a subset of Ω and q ∈ R.
1. First, we suppose that

sup
F⊆E

lim inf
δ→0

log T qµ,ν,δ(F )

− log δ
> dimq,B

µ,ν (E) + ε, for some ε > 0.

Then there exist F ⊆ E and δ0 > 0 such that for all 0 < δ ≤ δ0,

log T qµ,ν,δ(F ) > −(dimq,B
µ,ν (E) + ε) log δ

and
T qµ,ν,δ(F )δ(dim

q,B
µ,ν (E)+ε) > 1.

Therefore, we obtain

0 = H
q,(dimq,Bµ,ν (E)+ε)

µ,ν (E) ≥ lim inf
δ→0

T qµ,ν,δ(F )δ(dim
q,B
µ,ν (E)+ε) ≥ 1,

which is a contradiction. Then

sup
F⊆E

lim inf
δ→0

log T qµ,ν,δ(F )

− log δ
≤ dimq,B

µ,ν (E) + ε, for any ε > 0.

Now, suppose that

sup
F⊆E

lim inf
δ→0

log T qµ,ν,δ(F )

− log δ
< dimq,B

µ,ν (E)− ε, for some ε > 0.

Then for all F ⊆ E, and for every δ0 > 0 there exists 0 < δ ≤ δ0
such that

log T qµ,ν,δ(F ) < −(dimq,B
µ,ν (E)− ε) log δ

and
T qµ,ν,δ(F )δ(dim

q,B
µ,ν (E)−ε) < 1.
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Hence,

+∞ = H
q,(dimq,Bµ,ν (E)−ε)
µ,ν (E) = sup

F⊆E
lim inf
δ→0

T qµ,ν,δ(F )δ(dim
q,B
µ,ν (E)−ε) ≤ 1,

which is a contradiction. Therefore

dimq,B
µ,ν (E)− ε ≤ sup

F⊆E
lim inf
δ→0

log T qµ,ν,δ(F )

− log δ
≤ dimq,B

µ,ν (E) + ε,

for any ε > 0 and the result follows since ε is arbitrary.
2. We suppose that

lim sup
δ→0

logSqµ,ν,δ(E)

− log δ
> dim

q,B

µ,ν (E) + ε, for some ε > 0.

For every δ0 > 0 there exists 0 < δ ≤ δ0 such that

logSqµ,ν,δ(E) > −(dim
q,B

µ,ν (E) + ε) log δ

and
Sqµ,ν,δ(E)δ(dim

q,B
µ,ν (E)+ε) > 1.

Furthermore, we obtain

0 = C
q,(dim

q,B
µ,ν (E)+ε)

µ,ν (E) = lim sup
δ→0

Sqµ,ν,δ(E)δ(dim
q,B
µ,ν (E)+ε) ≥ 1,

which is a contradiction. Then

lim sup
δ→0

logSqµ,ν,δ(E)

− log δ
≤ dim

q,B

µ,ν (E) + ε, for any ε > 0.

Now, we suppose that

lim sup
δ→0

logSqµ,ν,δ(E)

− log δ
< dim

q,B

µ,ν (E)− ε, for some ε > 0.

Then there exists δ0 > 0 such that for all 0 < δ ≤ δ0,

logSqµ,ν,δ(E) < −(dim
q,B

µ,ν (E)− ε) log δ

and
Sqµ,ν,δ(E)δ(dim

q,B
µ,ν (E)−ε) < 1.

It follows that

+∞ = C
q,(dim

q,B
µ,ν (E)−ε)

µ,ν (E) = lim sup
δ→0

Sqµ,ν,δ(E)δ(dim
q,B
µ,ν (E)−ε) ≤ 1,
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which is a contradiction. Therefore

dim
q,B

µ,ν (E)− ε ≤ lim sup
δ→0

logSqµ,ν,δ(E)

− log δ
≤ dim

q,B

µ,ν (E) + ε,

for any ε > 0. The result now follows by letting ε→ 0. �

4.3. Proof of Theorem 3.3. Let q ∈ R and E be a subset of Ω.
1. Suppose that

dimq,MB
µ,ν (E) >

inf

{
sup
i

dimq,B
µ,ν (Ei) | E ⊆

⋃
i

Ei and Ei ⊆ Ω

}
=: β.

Then there exists t ∈ (β, dimq,MB
µ,ν (E)), so there is a sequence (Ei)i

of Ω such that E = ∪i(Ei ∩ E) and sup
i

dimq,B
µ,ν (Ei ∩ E) < t. Thus

H
q,t

µ,ν(Ei ∩ E) = 0 for any i, implying that Hq,t
µ,ν(E) = 0. It is a

contradiction.
Now, we suppose that dimq,MB

µ,ν (E) < β, there exists t in
(dimq,MB

µ,ν (E), β), thus Hq,t
µ,ν(E) = 0. Therefore, there is a sequence

(Ei)i of Ω such that E = ∪i(Ei ∩ E) and H
q,t

µ,ν(Ei ∩ E) < +∞,
for any i. Then, dimq,B

µ,ν (Ei) ≤ t for any i and β ≤ t. It is a
contradiction.

2. The proof is similar to the one of assertion (1). �

4.4. Proof of Theorem 3.4.
1. It follows easily from (4.1) that dim

q,B

µ,ν (E) ≤ ∆q
µ,ν(E). On the other

hand, if t > dim
q,B

µ,ν (E), by using Theorem 3.2, we have

t > lim sup
δ→0

logSqµ,ν,δ(E)

− log δ
≥ 0.

There exists δ0 > 0 such that for all 0 < δ ≤ δ0,

Sqµ,ν,δ(E) < δ−t.

Let
(
Ci

)
i
be a centered δ-packing of E. Thus∑
i

µ(Ci)
qν(Ci)

t ≤ Sqµ,ν,δ(E)δt < δtδ−t = 1.



The Hewitt-Stromberg measures in a probability space 339

Then, we have P
q,t

µ,ν,δ(E) < 1 and P
q,t

µ,ν(E) = inf
δ>0

P
q,t

µ,ν,δ(E) ≤ 1.

Hence, ∆q
µ,ν(E) ≤ t. It follows that ∆q

µ,ν(E) ≤ dim
q,B

µ,ν (E).
2. If E ⊆

⋃
i

Ei, then

Bq
µ,ν(E) ≤ sup

i
Bq
µ,ν(Ei) ≤ sup

i
∆q
µ,ν(Ei) = sup

i
dim

q,B

µ,ν (Ei).

Theorem 3.3 now gives that Bq
µ,ν(E) ≤ dim

q,MB

µ,ν (E).
Conversely, if t > Bq

µ,ν(E) then Pq,t
µ,ν(E) = 0, so that E ⊆ ∪iEi

for a collection of sets Ei with P
q,t

µ,ν(Ei) < 1 for each i. Hence, for
each i, if δ is small enough, then P

q,t

µ,ν,δ(Ei) < +∞ and so by (4.1),
Sqµ,ν,δ(Ei)δ

t < +∞ as δ → 0. Therefore, dim
q,B

µ,ν (Ei) ≤ t for each i,

giving from Theorem 3.3 that dim
q,MB

µ,ν (E) ≤ t. �
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