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THE FORCING NONSPLIT DOMINATION NUMBER OF A

GRAPH

J. John and Malchijah Raj

Abstract. A dominating set S of a graph G is said to be nonsplit dominating
set if the subgraph 〈V − S〉 is connected. The minimum cardinality of a nonsplit
dominating set is called the nonsplit domination number and is denoted by γns(G).
For a minimum nonsplit dominating set S of G, a set T ⊆ S is called a forcing subset
for S if S is the unique γns-set containing T . A forcing subset for S of minimum
cardinality is a minimum forcing subset of S. The forcing nonsplit domination
number of S, denoted by fγns(S), is the cardinality of a minimum forcing subset
of S. The forcing nonsplit domination number of G, denoted by fγns(G) is defined
by fγns(G) = min{fγns(S)}, where the minimum is taken over all γns-sets S in G.
The forcing nonsplit domination number of certain standard graphs are determined.
It is shown that, for every pair of positive integers a and b with 0 ≤ a ≤ b and
b ≥ 1, there exists a connected graph G such that fγns(G) = a and γns(G) = b.
It is shown that, for every integer a ≥ 0, there exists a connected graph G with
fγ(G) = fγns(G) = a, where fγ(G) is the forcing domination number of the graph.
Also, it is shown that, for every pair a, b of integers with a ≥ 0 and b ≥ 0 there
exists a connected graph G such that fγ(G) = a and fγns(G) = b.

1. Introduction

By a graph G = (V,E), we mean finite, undirected connected graph without loops
or multiple edges. The order and size of G are denoted by n and m respectively.
For graph theoretic terminology we refer to [8, 9]. Two vertices u and v are said to
be adjacent if uv is an edge of G. If uv ∈ E(G), we say that u is a neighbor of
v and denote by N(v), the set of neighbors of v. The degree of a vertex v ∈ V is
d(v) = |N(v)|. The minimum and maximum degrees of a graph G are denoted by
δ(G) and ∆(G), respectively. A vertex of degree 1 is called an end vertex. A vertex
v is an universal vertex of a graph G, if it is a full degree vertex of G. The distance
d(u, v) between u and v in a connected graph G is the length of a shortest u-v path
in G. A u-v path of length d(u, v) is called a u-v geodesic. The diameter of a graph G
is the maximum distance between the pair of vertices of G. For any set S of vertices
of G, the induced subgraph 〈S〉 is the maximal subgraph of G with vertex set S. A
vertex v of a graph G is a simplicial vertex if 〈N(v)〉 is complete. The join G + H
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of graphs G and H is the graph with vertex set V (G+H) = V (G) ∪ V (H) and edge
set E(G + H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G) and v ∈ V (H)}. Fn is the graph
obtained from K1 and Pn−1, where Fn = K1 + Pn−1.

A set S ⊂ V of a graph G is a dominating set if for every vertex v ∈ V − S, there
exists a vertex u ∈ S such that v is adjacent to u. The minimum cardinality of a
dominating set is the domination number and is denoted by γ(G). This was studied
in [9]. A minimum dominating set of a graph G is hence often called as a γ-set of G.
A vertex v of a connected graph G is said to be a dominating vertex of G if v belongs
to every γ-set of G. Let S be a γ-set of G. A set T ⊆ S is called a forcing subset for S
if S is the unique γ-set containing T . A forcing subset for S of minimum cardinality
is a minimum forcing subset of S. The forcing domination number of S, denoted by
fγ(S), is the cardinality of a minimum forcing subset of S. The forcing domination
number of G, denoted by fγ(G), is fγ(G) = min{fγ(S)}, where the minimum is
taken over all γ-sets in G. The forcing concept in domination was first introduced
and studied in [4] and further studied in [1–3,5–7,12]. The forcing concept for various
parameters were further studied in [10,11,15–17]. The forcing sets in a graph is a very
interesting concept. In the management of an institution, the executive committee
consists of senior members who have adequate rapport with other members of the
institution. Some members of the executive committee may sit in other important
committees also. Some times, restrictions are imposed on members that they can
be part of exactly one committee. This precisely leads to the concept of the forcing
dominating set. A dominating set S of a graph G is said to be a nonsplit dominating
set if the subgraph 〈V − S〉 is connected. The minimum cardinality of a nonsplit
dominating set is called the nonsplit domination number and is denoted by γns(G).
A minimum nonsplit dominating set of a graph G is often called as a γns-set of G.
This concept was introduced in [13] and further studied in [14, 18]. The nonsplit
domination number is also known as complementary connected domination number.
A communication network can be represented by a connected graph G, where the
vertices of G represent processors and edges represent bi-directional communication
channels. A dominating set in a graph can be interpreted as a set of processors from
which information can be passed on to all the other processors. Hence determination
of non split domination parameter of a graph is an important problem. Nonsplit
domination is very effective in modeling problems in social network analysis. It can
be used to analyze the social relations among individuals and to select representatives
of a group subject to some constrains. Members of a group usually have different
opinions and they divide among themselves based on their opinion. Good relations
among the rest of the members can be represented by the presence of an edge between
them. The constraints imposed on the individuals so that they can be representatives
of exactly one group lead to the concept of forcing nonsplit dominating set.

The following theorem is used in the sequel.

Theorem 1.1. [9] Let G be a connected graph andW be the set of all dominating
vertices of G. Then fγ(G) ≤ γ(G)− |W |.

Throughout the following G denotes a connected graph with at least two vertices.
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2. The forcing nonsplit domination number of a graph

Definition 2.1. Let G be a connected graph and S a γns-set of G. A subset
T ⊆ S is called a forcing subset for S if S is the unique γns-set containing T . A
forcing subset for S of minimum cardinality is a minimum forcing subset of S. The
forcing nonsplit domination number of S, denoted by fγns(S), is the cardinality of a
minimum forcing subset of S. The forcing nonsplit domination number of G, denoted
by fγns(G) is defined by fγns(G) = min{fγns(S)}, where the minimum is taken over
all γns-sets S in G.

Example 2.2. For the graph G given in Figure 2.1, S1 = {v1, v5}, S2 = {v2, v5}
and S3 = {v3, v5} are the only three γns-sets of G such that fγns(S1) = fγns(S2) =
fγns(S3) = 1 so that fγns(G) = 1.

v1

v2

v3

v4
v5

G
Figure 2.1

The next theorem follows immediately from the definition of the nonsplit dom-
ination number and the forcing nonsplit domination number of a connected graph
G.

Theorem 2.3. For every connected graph G, 0 ≤ fγns(G) ≤ γns(G).

Theorem 2.4. Let G be a connected graph with diameter at least 3. Then
γns(G) ≤ n− 2.

Proof. Let P : x0, x1, x2, ..., xp be a diametral path in G. Since diameter of G is at
least 3, P contains at least two internal vertices. Let S = V − {x1, x2}. Then S is a
γns-set of G so that γns(G) ≤ n− 2.

Remark 2.5. The bound in Theorem 2.4 is sharp. For the graph G = Pn (n ≥ 4),
γns(G) = n− 2.

Theorem 2.6. Let G be a connected graph with diameter at least 3. Then each
end vertex of G belongs to every γns-set of G.

Proof. Since diameter of G is at least 3, by Theorem 2.4, γns(G) ≤ n− 2. Let S be
a γns-set of G. Let v be a cut vertex of G and vx be an end edge of G. We prove that
x ∈ S. Suppose that x /∈ S. Then it follows that v ∈ S. This implies that S contains
all the vertices of G except v. Therefore γns(G) ≥ n − 1, which is a contradiction.
Hence x ∈ S.
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Remark 2.7. Theorem 2.6 need not be true if diameter is at most 2. For the
star G = K1, n−1 with V (G) = {v, v1, v2, ..., vn−1}, there exists a γns-set S such that
vn−1 /∈ S.

Definition 2.8. A vertex v of a connected graph G is a nonsplit dominating vertex
of G if v belongs to every nonsplit dominating set of G. If G has a unique nonsplit
dominating set S, then every vertex of S is a nonsplit dominating vertex of G.

The proof of the following theorems are straightforward, so we omit the proofs.

Theorem 2.9. Let G be a connected graph.

(a) fγns(G) = 0 if and only if G has a unique minimum nonsplit dominating set.
(b) fγns(G) = 1 if and only if G has at least two minimum nonsplit dominating sets,

one of which is a unique minimum nonsplit dominating set containing one of its
elements, and

(c) fγns(G) = γns(G) if and only if no minimum nonsplit dominating set of G is the
unique minimum nonsplit dominating set containing any of its proper subsets.

Theorem 2.10. Let G be a connected graph and W be the set of all nonsplit
dominating vertices of G. Then fγns(G) ≤ γns(G)− |W |.

Corollary 2.11. Let G be a connected graph with d ≥ 3 and l be the number of
end vertices of G. Then fγns(G) ≤ γns(G)− l.

Proof. This follows from Theorems 2.6 and 2.10.

Remark 2.12. The bound in Theorem 2.10 is sharp. For the graph G given
in Figure 2.1, S1 = {v1, v5}, S2 = {v2, v5} and S3 = {v3, v5} are the only three
γns-sets of G such that fγns(S1) = fγns(S2) = fγns(S3) = 1 so that fγns(G) = 1
and γns(G) = 2. Also, W = {v5} is the only nonsplit dominating vertex of G and
so fγns(G) = γns(G) − |W |. Also, the inequality in Theorem 2.10, can be strict.
For the graph G given in Figure 2.2, S1 = {v1, v4, v5, v7}, S2 = {v1, v4, v5, v8}, S3 =
{v2, v3, v5, v7}, S4 = {v2, v3, v5, v8}, S5 = {v2, v4, v5, v7} and S6 = {v2, v4, v5, v8} are
the γns-sets of G such that fγns(Si) = 2 for i = 1 to 4 and fγns(Si) = 3 for i = 5, 6 so
that γns(G) = 4, fγns(G) = 2 and |W | = 1. Thus fγns(G) < γns(G)− |W |.

v1

v2

v3

v4

v5

v6

v7

v8

G
Figure 2.2

In the following we determine the forcing nonsplit domination number of some
standard graphs.
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Theorem 2.13. For the non trivial path G = Pn(n ≥ 2),

fγns(G) =



1, for n = 2;

2, for n = 3;

0, for n = 4;

1, for n = 5, 6;
n−3
2
, for odd n ≥ 7;

n−2
2
, for even n ≥ 8.

Proof. Let Pn : v1, v2, ..., vn−1, vn. Let n = 2. Then S1 = {v1} and S2 = {v2} are
the only two γns-sets of G such that fγns(S1) = fγns(S2) = 1 so that fγns(G) = 1.
Let n = 3. Then S1 = {v1, v2}, S2 = {v1, v3} and S3 = {v2, v3} are the three γns-
sets of G such that fγns(S1) = fγns(S2) = fγns(S3) = 2 so that fγns(G) = 2. Let
n = 4. Then S = {v1, v4} is the unique γns-set of G so that fγns(G) = 0. Let n = 5.
Then S1 = {v1, v4, v5} and S2 = {v1, v2, v5} are the only two γns-sets of G such that
fγns(S1) = fγns(S2) = 1. Let n = 6. Then S1 = {v1, v4, v5, v6}, S2 = {v1, v2, v5, v6}
and S3 = {v1, v2, v3, v6} are the three γns-sets of G such that fγns(S1) = fγns(S3) = 1
and fγns(S2) = 2 so that fγns(G) = 1.

For odd n ≥ 7, there are n− 3 γns-sets viz., S1 = {v1, v4, v5, ..., vn}, S2 = {v1, v2, v5,
..., vn}, S3 = {v1, v2, v3, v6, ..., vn}, ..., Sn−5 = {v1, v2, v3, ..., vn−5, vn−2, vn−1, vn}, Sn−4 =
{v1, v2, v3, ..., vn−4, vn−1, vn}, Sn−3 = {v1, v2, v3, ..., vn−3, vn}. We observe that T1 =
{v4, v6, ..., vn−1} is a minimum forcing subset of S1 and so fγns(S1) = n−3

2
, Tn−5 =

{v2, v4, ...., vn−1
2
, v6, v9, ..., vn−2} is a minimum forcing subset of Sn−5 and so fγns(Sn−5) =

n−3
2

, Tn−4 = {v3, v6, ...., vn+1
2
, v7, v10, ..., vn−1} is a minimum forcing subset of Sn−4 and

so fγns(Sn−4) = n−3
2

and Tn−3 = {v2, v4, v6, ...., vn−3} is a minimum forcing subset of

Sn−3 and so fγns(Sn−3) = n−3
2

. For i = 2, 4, 6, ..., n−7, Si = {v1, v2, ..., vi, vi+3, vi+4, ..., vn}.
Then Ti = {v2, v4, ..., vi, vi+3, vi+5, ..., vn−2} is a minimum forcing subset of Si and
so fγns(Si) = n−3

2
. For j = 3, 5, 7, ..., n − 6, Sj = {v1, v2, ..., vi, vi+3, vi+4, ..., vn}.

Then Tj = {v3, v5, ..., vj+2, vj+5, ..., vn−1} is a minimum forcing subset of Sj and so
fγns(Sj) = n−3

2
. Therefore fγns(G) = n−3

2
for odd n ≥ 7.

For even n ≥ 8, there are n−3 γns-sets viz., S1 = {v1, v4, v5, ..., vn}, S2 = {v1, v2, v5,
..., vn}, S3 = {v1, v2, v3, v6, ..., vn}, ..., Sn−5 = {v1, v2, v3, ..., vn−5, vn−2, vn−1, vn}, Sn−4 =
{v1, v2, v3, ..., vn−4, vn−1, vn}, Sn−3 = {v1, v2, v3, ..., vn−3, vn}. Then T1 = {v4, v6, ..., vn}
is a minimum forcing subset of S1 and so fγns(S1) = n−2

2
, Tn−5 = {v3, v5, ...., vn

2
+1, vn−2

2
,

..., vn−1} is a minimum forcing subset of Sn−5 and so fγns(Sn−5) = n−2
2

, Tn−4 =
{v2, v4, ...., vn

2
, vn

2
+2, ..., vn−1} is a minimum forcing subset of Sn−4 and so fγns(Sn−4) =

n−2
2

and Tn−3 = {v2, v4, ...., vn
2
, vn

2
+2, ..., vn−3} is a minimum forcing subset of Sn−3

and so fγns(Sn−3) = n−2
2

. For i = 2, 4, 6, ..., n− 6, Si = {v1, v2, ..., vi, vi+3, vi+4, ..., vn}.
Then Ti = {v2, v4, ..., vi, vi+3, vi+5, ..., vn−1} is a minimum forcing subset of Si and so
fγns(Si) = n−2

2
. For j = 3, 5, 7, ..., n − 7, Sj = {v1, v2, ..., vi, vi+3, vi+4, ..., vn}. Then

Tj = {v2, v4, ..., vj−2, vj, vj+1, vj+3, ..., vn−3} is a minimum forcing subset of Sj and so
fγns(Sj) = n−2

2
. Therefore fγns(G) = n−2

2
for even n ≥ 8.

Theorem 2.14. For the complete graph G = Kn(n ≥ 2), fγns(G) = 1.

Proof. For G = Kn, any singleton subset of G is a γns-set of G so that γns(G) = 1.
Since n ≥ 2, G contains more than one γns-set and so fγns(G) ≥ 1. By Theorem 2.3,
fγns(G) = 1.
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Theorem 2.15. For the complete bipartite graph G = Kr,s(2 ≤ r ≤ s), fγns(G) =
2.

Proof. Let X = {x1, x2, ..., xr} and Y = {y1, y2, ..., ys} be the bipartite sets of G.
Let Sij = {xi, yj} (1 ≤ i ≤ r) and (1 ≤ j ≤ s). Then Sij is a γns-set of G so that
γns(G) = 2. Since any singleton subset of Sij is a subset of more than one γns-set of
G for some i and j. Therefore fγns(G) ≥ 2. By Theorem 2.3, fγns(G) = 2.

Theorem 2.16. For the star G = K1,n−1, fγns(G) = n− 1.

Proof. Let v be the center and v1, v2, ..., vn−1 be the set of all end vertices ofG. Then
S = {v1, v2, ..., vn−1}, S1 = {v, v2, v3, ..., vn−1}, S2 = {v, v1, v3, ..., vn−1}, ..., Sn−1 =
{v, v1, v2, ..., vn−2} are the γns-sets of G with cardinality n − 1. We notice that no
γns-set of G is the unique γns-set containing any of its proper subsets. Therefore
fγns(G) = γns(G) = n− 1.

Theorem 2.17. For the cycle G = Cn (n ≥ 3), fγns(G) = γns(G) = n− 2.

Proof. Let Cn : v1, v2, ..., vn−1, vn be the cycle of order n. Then S1 = {v1, v2, v3, ..., vn−2},
S2 = {v2, v3, v4, ..., vn−2, vn−1}, S3 = {v3, v4, ..., vn−1, vn}, ..., Sn = {vn, v1, v2, v3, ..., vn−3}
are the γns - sets of G with cardinality n − 2. We notice that no γns-set of G is the
unique γns-set containing any of its proper subsets. Therefore fγns(G) = γns(G) =
n− 2.

Theorem 2.18. Let G be a connected graph without cut vertices. If ∆(G) = n−1,
then 0 ≤ fγns(G) ≤ 1.

Proof. By the definition of forcing nonsplit domination number, we have fγns(G) ≥
0. Since G contains no cut vertices, γns(G) = 1. By Theorem 2.3, fγns(G) ≤ 1. Thus
0 ≤ fγns(G) ≤ 1.

The following theorem shows the sharpness of the lower and the upper bounds.

Theorem 2.19. Let G be a connected graph of order n ≥ 4 without cut vertices
and ∆(G) = n− 1.

(i) If G contains only one universal vertex, then fγns(G) = 0.
(ii) If G contains more than one universal vertex, then fγns(G) = 1.

Proof. (i) Let u be the universal vertex of G which is not a cut vertex. Then
S = {u} is the unique γns-set of G so that fγns(G) = 0.

(ii) Suppose that G contains more than one universal vertex. Let x1, x2, ..., xr,
(2 ≤ r ≤ n) be the universal vertices of G. Since G contains no cut vertices, Si = {xi}
is a γns-set of G for 1 ≤ i ≤ r such that fγns(Si) = 1 for all 1 ≤ i ≤ r. Therefore
fγns(G) = 1.

Lemma 2.20. Let G = K1 + (m1K1 ∪ m2K2 ∪ m3K3 ∪ ... ∪ mrKr), where m1 +
m2 + m3 + ...mr ≥ 2 and S be a γns-set of G. If δ(G) ≥ 2, then S contains at least
one element from each component of G− v, where V (K1) = {v}.

Proof. Let v be the cut vertex ofG and S be a γns-set ofG. LetG1, G2, ..., Gr(r ≥ 2)
be the components of G − v. Since δ(G) ≥ 2, |V (Gi)| ≥ 2 for all i (1 ≤ i ≤ r). Let
xi be a vertex of V (Gi) for all i, 1 ≤ i ≤ r. We prove that S contains at least one
element from each Gi (1 ≤ i ≤ r). On the contrary, suppose that there exists a
component say G1, such that S contains no elements of G1. Then it follows that
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v ∈ S and S contains all the elements from each Gi for all i (2 ≤ i ≤ r) and so
γns(G) ≥ 1 + 2(r− 1) = 2r− 1. Let S1 = {x1, x2, x3, ..., xr}. Then S1 is a γns-set of G
so that γns(G) = r < 2r − 1, which is a contradiction. Therefore S contains at least
one element from each component of G− v.

Theorem 2.21. LetG = K1 + (m1K1 ∪m2K2 ∪m3K3 ∪ ... ∪mrKr), where m1 +
m2 +m3 + ...mr ≥ 2. If δ(G) ≥ 2, then fγns(G) = γns(G).

Proof. Let v be the cut vertex ofG and S be a γns-set ofG. LetG1, G2, ..., Gr(r ≥ 2)
be the components of G − v. Since δ(G) ≥ 2, |V (Gi)| ≥ 2 for 1 ≤ i ≤ r. Let
xi, yi ∈ V (Gi) for 1 ≤ i ≤ r and let Hi = {xi, yi} (1 ≤ i ≤ r). By Lemma 2.20,
S contains at least one element from each Hi (1 ≤ i ≤ r) and so γns(G) ≥ r. Let
S = {x1, x2, ..., xr}. Then S is a minimum nonsplit dominating set of G so that
γns(G) = r.

Next we show that fγns(G) = r. Since γns(G) = r and every γns-set of G contains
at least one element from each Hi (1 ≤ i ≤ r), it is easily seen that every γns-set is
of the form S = {c1, c2, ..., cr}, where ci ∈ Hi (1 ≤ i ≤ r). Let T be a proper subset
of S with |T | < r. Then there exists some i such that Hi ∩ T = φ which shows that
fγns(G) = r = γns(G).

3. Realization results

In this section, we present some graphs from which various graphs arising in theo-
rems are generated using identification.

Definition 3.1. Let Pi : ui, vi (1 ≤ i ≤ a) be a copy of path on two vertices and
let P

′
i : xi, yi (1 ≤ i ≤ b) be another copy of path on two vertices. Let Ja, b be the

graph obtained from Pi (1 ≤ i ≤ a) and P
′
i (1 ≤ i ≤ b) by adding a new vertex x and

introducing the edges xxi (1 ≤ i ≤ b), xui (1 ≤ i ≤ a) and xvi (1 ≤ i ≤ a).

Definition 3.2. Let Ki
3 : xi, yi, zi (1 ≤ i ≤ a) be a copy of the complete graph K3.

Let Ga be the graph obtained from Ki
3 by adding a new vertex x and introducing the

edges xxi (1 ≤ i ≤ a) and xzi (1 ≤ i ≤ a).

Definition 3.3. Let Ki
4 : pi, qi, ri, si (1 ≤ i ≤ a) be a copy of the complete graph

K4. Let Ha be the graph obtained from Ki
4 (1 ≤ i ≤ a) by adding new vertices

y, t1, t2, ..., ta and introducing the edges ypi, yqi and siti (1 ≤ i ≤ a).

Definition 3.4. Let Pi : ui, vi (1 ≤ i ≤ a) be a copy of path on two vertices. Let
Ra be the graph obtained from Pi (1 ≤ i ≤ a) by adding the vertex z and introducing
the edges zui (1 ≤ i ≤ a).

In view of Theorem 2.3, we have the following realization result.

Theorem 3.5. For every pair of positive integers a and b with 0 ≤ a ≤ b and
b ≥ 1, there exists a connected graph G such that fγns(G) = a and γns(G) = b.

Proof. Case 1. a = 0, b ≥ 1.
Subcase 1.1. a = 0, b = 1. Consider the graph G = Fn (n ≥ 5). Since G contains

only one universal vertex, γns(G) = 1 and by Theorem 2.19 (i) fγns(G) = 0.
Subcase 1.2. a = 0, b = 2. Consider the graph G given in Figure 3.1. Then

S = {v1, v6} is the unique γns-set of G so that γns(G) = 2 and fγns(G) = 0.
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v5
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G
Figure 3.1

Subcase 1.3. a = 0, b ≥ 3. Let G be the graph obtained from a path Pb (b ≥ 3)
by adding an end edge to each vertex of Pb. Since b ≥ 3, the diameter is at least 3.
Let S be the set of end vertices of G. Then by Theorem 2.6, S is a subset of every
γns-set of G and so γns(G) ≥ b. Since S is the unique γns-set of G, it follows from
Theorem 2.10 (a) that fγns(G) = 0 and γns(G) = b.

Case 2. 0 < a = b. Let G = K1 + aK2 (a ≥ 1). Then by Theorem 2.21, we have
γns(G) = fγns(G) = a.

Case 3. 0 < a < b. Consider the graph G = Ja, b−a. First we show that γns(G) = b.
Let Y = {y1, y2, ..., yb−a}. By Theorem 2.6, Y is a subset of every minimum nonsplit
dominating set of G. Let Ai = {ui, vi}(1 ≤ i ≤ a). Then it is easily observed that
every nonsplit dominating set ofG contains at least one vertex from each Ai(1 ≤ i ≤ a)
and so γns(G) ≥ b − a + a = b. Let S = Y ∪ {u1, u2, ..., ua}. Then S is a minimum
nonsplit dominating set of G so that γns(G) = b. Next we show that fγns(G) = a. By
Corollary 2.11, fγns(G) ≤ γns(G)− |Y | = b− (b− a) = a. Now, since γns(G) = b and
Y is a subset of every minimum nonsplit dominating set of G, it is easily seen that
every γns-set of G is of the form S

′
= Y ∪ {c1, c2, ..., ca}, where ci ∈ Ai(1 ≤ i ≤ a).

Let T be any proper subset of S
′

with |T | < a. Then it is clear that there exists some
i such that T ∩ Ai = φ, which shows that fγns(G) = a.

Proposition 3.6. The difference |fγ(G)− fγns(G)| can be arbitrarily large.

Proof. Consider the graph Ja, 2a (a ≥ 2). We notice that γ(G) = 2a + 1 and
fγ(G) = 2a. Also, by Theorem 3.5, γns(G) = 3a and fγns(G) = a. Therefore
|fγ(G)− fγns(G)| = |2a− a| = a.

We know that γ(G) ≤ γns(G). However, there was no known relationship between
fγ(G) and fγns(G). So we have the following realization results.

Theorem 3.7. For every integer a ≥ 0, there exists a connected graph G with
fγ(G) = fγns(G) = a.

Proof. Case 1. a = 0. Let G = Fn (n ≥ 5). Since G contains only one universal
vertex, fγ(G) = 0. By Theorem 2.19 (i), fγns(G) = 0.

Case 2. a ≥ 1. Consider the graph G = Ga. First we prove that γ(G) = a. For
1 ≤ i ≤ a, let Ai = {xi, zi}. It is easily observed that every minimum dominating
set of G contains at least one vertex from each Ai (1 ≤ i ≤ a) and so γ(G) ≥ a. Let
D = {x1, x2, ..., xa}. Then D is a minimum dominating set of G so that γ(G) = a.
Next we prove that fγ(G) = a. Since γ(G) = a and every minimum dominating set
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of G contains at least one vertex from each Ai (1 ≤ i ≤ a), it is easily seen that every
γ-set is of the form D1 = {c1, c2, ..., ca} where ci ∈ Ai (1 ≤ i ≤ a). Let T be any
proper subset of D1 with |T | < a. Then it is clear that there exists some i such that
T ∩ Ai = φ, which shows that fγ(G) = a.

Next we show that γns(G) = a. It is easily observed that every nonsplit dominating
set of G contains at least one vertex from each Ai (1 ≤ i ≤ a) and so γns(G) ≥ a.
Let D = {x1, x2, ..., xa}. Then D is a minimum dominating set of G and 〈V −D〉 is
connected. HenceD is a minimum nonsplit dominating set ofG and so γns(G) = a. By
the similar argument as in the proof of fγ(G) = a, we can prove that fγns(G) = a.

Theorem 3.8. For every pair a, b of integers with a ≥ 0 and b ≥ 0 there exists a
connected graph G such that fγ(G) = a and fγns(G) = b.

Proof. Case 1. 0 ≤ a ≤ b.
Subcase 1.1. 0 ≤ a = b. Then the graph constructed in Theorem 3.7 satisfies the

requirements of this case.
Subcase 1.2. a = 0, b = 1. Let G = K1, 3 + e. Then fγ(G) = 0 and fγns(G) = 1.
Subcase 1.3. a = 0, b ≥ 2. Consider the graph G = Hb. First we prove that

γ(G) = b+ 1 and fγ(G) = 0. For 1 ≤ i ≤ b, it is easily observed that every minimum
dominating set contains the vertex y and each si (1 ≤ i ≤ b) and so γ(G) = b + 1.
Let D = {y, s1, s2, ..., sb}. Then D is the unique γ-set of G so that γ(G) = b+ 1 and
fγ(G) = 0.

Next we prove that γns(G) = 2b and fγns(G) = b. Let Z = {t1, t2, ..., tb}. By
Theorem 2.6, Z is a subset of every minimum nonsplit dominating set of G. For
1 ≤ i ≤ b, let Bi = {pi, qi}. It is easily observed that every nonsplit dominating
set of G contains at least one vertex from each Bi (1 ≤ i ≤ b) and so γns(G) ≥ 2b.
Let D1 = Z ∪ {p1, p2, ..., pb}. Then D1 is a minimum nonsplit dominating set of G
so that γns(G) = 2b. By Corollary 2.11, fγns(G) ≤ γns(G) − |Z| = 2b − b = b.
Now, since γns(G) = 2b and Z is a subset of every minimum nonsplit dominating set,
it is easily seen that every γns-set D2 is of the form D2 = Z ∪ {c1, c2, ..., cb} where
ci ∈ Bi (1 ≤ i ≤ b). Let T be any proper subset of D2 with |T | < b. Then it is clear
that there exists some i such that T ∩Bi = φ, which shows that fγns(G) = b.

Subcase 1.4. 0 < a < b. Let G be the graph obtained from Ga and Hb−a
by identifying the vertex x of Ga and y of Hb−a. First we prove that γ(G) = b. For
1 ≤ i ≤ a, let Ai = {xi, zi}. It is easily observed that every minimum dominating set of
G contains the vertex si(1 ≤ i ≤ b−a) and at least one vertex from each Ai(1 ≤ i ≤ a)
and so γ(G) ≥ b− a+ a = b. Let Z = {s1, s2, ..., sb−a} and D3 = Z ∪ {x1, x2, ....., xa}.
Then D3 is a minimum dominating set of G and so γ(G) = b. Next we prove that
fγ(G) = a. Now, since γ(G) = b and Z is a subset of every γ-set of G, every γ-set is
of the form D4 = Z ∪ {c1, c2, ..., ca} where ci ∈ Ai (1 ≤ i ≤ a). Let T be any proper
subset of D4 with |T | < a. It is clear that there exists some i such that T ∩ Ai = φ,
which shows that fγ(G) = a.

Next we prove that γns(G) = 2b− a. Let Z1 = {t1, t2, ..., tb−a}. Then by Theorem
2.6, Z1 is a subset of every minimum nonsplit dominating set of G. For 1 ≤ i ≤ b− a,
let Bi = {pi, qi}. Then every minimum nonsplit dominating set of G contains at least
one vertex from Ai (1 ≤ i ≤ a) and at least one vertex from Bi (1 ≤ i ≤ b − a) and
so γns(G) ≥ b− a+ a+ b− a = 2b− a. Let D5 = Z ∪ {x1, x2, ....., xa, p1, p2, ..., pb−a}.
Then D5 is a nonsplit dominating set of G so that γns(G) = 2b − a. Next we prove
that fγns(G) = b. Since γns(G) = 2b−a and every γns-set of G contains Z1, it is easily
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seen that every γns-set is of the form D6 = Z1∪{c1, c2, ..., ca}∪{d1, d2, ..., db−a} where
ci ∈ Ai (1 ≤ i ≤ a) and di ∈ Bi (1 ≤ i ≤ b − a). Let T be any proper subset of D6

with |T | < b. Then it is clear that there exists some i and j such that T ∩Ai∩Bj = φ
which shows fγns(G) = b.

Case 2. 0 ≤ b < a
Subcase 2.1. b = 0, a = 1. Consider the graph G given in Figure 3.2. Then

S1 = {v1, v3} and S2 = {v2, v3} are the two γ-sets of G so that γ(G) = 2 and
fγ(G) = 1. Also, S3 = {v1, v4, v5} is the unique γns-set of G and so γns(G) = 3 and
fγns(G) = 0.

v1 v2 v3 v4

v5

G
Figure 3.2

Subcase 2.2. b = 0, a ≥ 2. Consider the graph Ra. Let G be the graph obtained
from Ra by adding two new vertices u and v and introducing the edges zu and zv.
First we show that γ(G) = a + 1. For 1 ≤ i ≤ a, let Ti = {ui, vi}. Then it is easily
observed that every minimum dominating set of G contains the vertex z and at least
one vertex from each Ti(1 ≤ i ≤ a) and so γ(G) ≥ a+1. Let S4 = {z}∪{u1, u2, ..., ua}.
Then S4 is a minimum dominating set of G so that γ(G) = a+ 1. Next we prove that
fγ(G) = a. By Theorem 1.1, fγ(G) ≤ γ(G)− |Z|. Since γ(G) = a+ 1 and every γ-set
of G contains z, it is easily seen that every γ-set is of the form S5 = {z}∪{c1, c2, ..., ca},
where ci ∈ Ti (1 ≤ i ≤ a). Let T be a proper subset of S5 with |T | < a. Then it is
clear that there exists some i such that T ∩Ti = φ, which shows that fγ(G) = a. Next
we prove that γns(G) = a+ 2 and fγns(G) = 0. Let W = {u, v, v1, v2, ..., va}. Then by
Theorem 2.6, W is a subset of every minimum nonsplit dominating set of G and so
γns(G) ≥ a + 2. It is clear that W is the unique γns-set of G so that γns(G) = a + 2
and fγns(G) = 0.

Subcase 2.3. 0 < b < a. Let G be the graph obtained from Gb and Ra−b
by identifying the vertex x of Gb and the vertex z of Ra−b and also adding two new
vertices u and v and introducing the edges zu and zv. First we prove that γ(G) = a+1.
For 1 ≤ i ≤ b, let Ai = {xi, yi, zi} and for 1 ≤ i ≤ a− b, let Bi = {ui, vi}. It is easily
observed that every dominating set of G contains the vertex z and at least one vertex
from each Ai (1 ≤ i ≤ b) and at least one vertex from each Bi (1 ≤ i ≤ a− b) and so
γ(G) ≥ 1 + b+ a− b = a+ 1. Now as in earlier cases, every γ-set of G is of the form
S6 = {z} ∪ {u1, u2, ..., ua−b} ∪ {x1, x2, ..., xb}. Then S6 is a minimum dominating set
of G which shows that γ(G) = 1 + a− b+ b = a+ 1. Next we prove that fγ(G) = a.
Since γ(G) = a+1 and every γ-set of G contains z, it is easily seen that every γ-set is
of the form S7 = {z} ∪ {c1, c2, ..., cb} ∪ {d1, d2, ..., da−b} where ci ∈ Ai (1 ≤ i ≤ b) and
di ∈ Bi (1 ≤ i ≤ a− b). Let T be any proper subset of S7 with |T | < a. It is clear that
there exists some i and j such that T ∩ Ai ∩Bj = φ, which shows that fγ(G) = a.

Next we prove that γns(G) = a+2 and fγns(G) = b. Let W1 = {u, v, v1, v2, ..., va−b}.
Then by Theorem 2.6, W1 is a subset of every minimum nonsplit dominating set of
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G. It is easily observed that every nonsplit dominating set of G contains at least
one vertex from Ai (1 ≤ i ≤ b) and so γns(G) ≥ a − b + 2 + b = a + 2. Let
S8 = W1∪{x1, x2, ..., xb}. Then S8 is a minimum nonsplit dominating set of G so that
γns(G) = a− b+ 2 + b = a+ 2. Next we prove that fγns(G) = b. Since γns(G) = a+ 2
and every γns-set of G contains W1, it is easily seen that every γns-set is of the form
S9 = W1 ∪ {c1, c2, ..., cb} where ci ∈ Ai (1 ≤ i ≤ b). Let T be any proper subset of S9

with |T | < b. Then it is clear that there exists some i such that T ∩ Ai = φ, which
shows fγns(G) = b.

Remark 3.9. (i) Let C6 : v1, v2, v3, v4, v5, v6, v1. Let G be the graph obtained
from C6 by introducing the edge v1v4. Then it is easily verified that γ(G) =
2, fγ(G) = 0, γns(G) = 2 and fγns(G) = 1. Thus fγ(G) < fγns(G) < γ(G) =
γns(G).

(ii) For the graph G given in Figure 3.3, γ(G) = 2, fγ(G) = 1, γns(G) = 2 and
fγns(G) = 0. Thus fγns(G) < fγ(G) < γ(G) = γns(G).

(iii) For G = C6, γ(G) = 2 and γns(G) = 4. Also, fγ(G) = 1 and fγns(G) = 4. Thus
fγ(G) < γ(G) < fγns(G) = γns(G).

v1 v2 v3

v4

v5

G
Figure 3.3

So we leave the following problem as open question.

Problem 1. For any four positive integers with a ≥ 0, b ≥ 0, c ≤ b ≤ d and d ≥ 1,
does there exist a connected graph G such that fγ(G) = a, fγns(G) = b, γ(G) = c
and γns(G) = d?
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