THE FORCING NONSPLIT DOMINATION NUMBER OF A GRAPH

J. John and Malchijah Raj

Abstract

A dominating set S of a graph G is said to be nonsplit dominating set if the subgraph $\langle V-S\rangle$ is connected. The minimum cardinality of a nonsplit dominating set is called the nonsplit domination number and is denoted by $\gamma_{n s}(G)$. For a minimum nonsplit dominating set S of G, a set $T \subseteq S$ is called a forcing subset for S if S is the unique $\gamma_{n s}$-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing nonsplit domination number of S, denoted by $f_{\gamma n s}(S)$, is the cardinality of a minimum forcing subset of S. The forcing nonsplit domination number of G, denoted by $f_{\gamma n s}(G)$ is defined by $f_{\gamma n s}(G)=\min \left\{f_{\gamma n s}(S)\right\}$, where the minimum is taken over all $\gamma_{n s}$-sets S in G. The forcing nonsplit domination number of certain standard graphs are determined. It is shown that, for every pair of positive integers a and b with $0 \leq a \leq b$ and $b \geq 1$, there exists a connected graph G such that $f_{\gamma n s}(G)=a$ and $\gamma_{n s}(G)=b$. It is shown that, for every integer $a \geq 0$, there exists a connected graph G with $f_{\gamma}(G)=f_{\gamma n s}(G)=a$, where $f_{\gamma}(G)$ is the forcing domination number of the graph. Also, it is shown that, for every pair a, b of integers with $a \geq 0$ and $b \geq 0$ there exists a connected graph G such that $f_{\gamma}(G)=a$ and $f_{\gamma n s}(G)=b$.

1. Introduction

By a graph $G=(V, E)$, we mean finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For graph theoretic terminology we refer to $[8,9]$. Two vertices u and v are said to be adjacent if $u v$ is an edge of G. If $u v \in E(G)$, we say that u is a neighbor of v and denote by $N(v)$, the set of neighbors of v. The degree of a vertex $v \in V$ is $d(v)=|N(v)|$. The minimum and maximum degrees of a graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. A vertex of degree 1 is called an end vertex. A vertex v is an universal vertex of a graph G, if it is a full degree vertex of G. The distance $d(u, v)$ between u and v in a connected graph G is the length of a shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called a $u-v$ geodesic. The diameter of a graph G is the maximum distance between the pair of vertices of G. For any set S of vertices of G, the induced subgraph $\langle S\rangle$ is the maximal subgraph of G with vertex set S. A vertex v of a graph G is a simplicial vertex if $\langle N(v)\rangle$ is complete. The join $G+H$

Received April 25, 2020. Accepted December 28, 2020. Published online March 30, 2021.
2010 Mathematics Subject Classification: 05C69.
Key words and phrases: dominating set, domination number, forcing domination number, nonsplit domination number, forcing nonsplit domination number.
(C) The Kangwon-Kyungki Mathematical Society, 2021.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
of graphs G and H is the graph with vertex set $V(G+H)=V(G) \cup V(H)$ and edge set $E(G+H)=E(G) \cup E(H) \cup\{u v: u \in V(G)$ and $v \in V(H)\}$. F_{n} is the graph obtained from K_{1} and P_{n-1}, where $F_{n}=K_{1}+P_{n-1}$.

A set $S \subset V$ of a graph G is a dominating set if for every vertex $v \in V-S$, there exists a vertex $u \in S$ such that v is adjacent to u. The minimum cardinality of a dominating set is the domination number and is denoted by $\gamma(G)$. This was studied in [9]. A minimum dominating set of a graph G is hence often called as a γ-set of G. A vertex v of a connected graph G is said to be a dominating vertex of G if v belongs to every γ-set of G. Let S be a γ-set of G. A set $T \subseteq S$ is called a forcing subset for S if S is the unique γ-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing domination number of S, denoted by $f_{\gamma}(S)$, is the cardinality of a minimum forcing subset of S. The forcing domination number of G, denoted by $f_{\gamma}(G)$, is $f_{\gamma}(G)=\min \left\{f_{\gamma}(S)\right\}$, where the minimum is taken over all γ-sets in G. The forcing concept in domination was first introduced and studied in [4] and further studied in $[1-3,5-7,12]$. The forcing concept for various parameters were further studied in $[10,11,15-17]$. The forcing sets in a graph is a very interesting concept. In the management of an institution, the executive committee consists of senior members who have adequate rapport with other members of the institution. Some members of the executive committee may sit in other important committees also. Some times, restrictions are imposed on members that they can be part of exactly one committee. This precisely leads to the concept of the forcing dominating set. A dominating set S of a graph G is said to be a nonsplit dominating set if the subgraph $\langle V-S\rangle$ is connected. The minimum cardinality of a nonsplit dominating set is called the nonsplit domination number and is denoted by $\gamma_{n s}(G)$. A minimum nonsplit dominating set of a graph G is often called as a $\gamma_{n s}$-set of G. This concept was introduced in [13] and further studied in [14, 18]. The nonsplit domination number is also known as complementary connected domination number. A communication network can be represented by a connected graph G, where the vertices of G represent processors and edges represent bi-directional communication channels. A dominating set in a graph can be interpreted as a set of processors from which information can be passed on to all the other processors. Hence determination of non split domination parameter of a graph is an important problem. Nonsplit domination is very effective in modeling problems in social network analysis. It can be used to analyze the social relations among individuals and to select representatives of a group subject to some constrains. Members of a group usually have different opinions and they divide among themselves based on their opinion. Good relations among the rest of the members can be represented by the presence of an edge between them. The constraints imposed on the individuals so that they can be representatives of exactly one group lead to the concept of forcing nonsplit dominating set.

The following theorem is used in the sequel.

Theorem 1.1. [9] Let G be a connected graph and W be the set of all dominating vertices of G. Then $f_{\gamma}(G) \leq \gamma(G)-|W|$.

Throughout the following G denotes a connected graph with at least two vertices.

2. The forcing nonsplit domination number of a graph

Definition 2.1. Let G be a connected graph and S a $\gamma_{n s}$-set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique $\gamma_{n s}$-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing nonsplit domination number of S, denoted by $f_{\gamma n s}(S)$, is the cardinality of a minimum forcing subset of S. The forcing nonsplit domination number of G, denoted by $f_{\gamma n s}(G)$ is defined by $f_{\gamma n s}(G)=\min \left\{f_{\gamma n s}(S)\right\}$, where the minimum is taken over all $\gamma_{n s}$-sets S in G.

Example 2.2. For the graph G given in Figure 2.1, $S_{1}=\left\{v_{1}, v_{5}\right\}, S_{2}=\left\{v_{2}, v_{5}\right\}$ and $S_{3}=\left\{v_{3}, v_{5}\right\}$ are the only three $\gamma_{n s}$-sets of G such that $f_{\gamma n s}\left(S_{1}\right)=f_{\gamma n s}\left(S_{2}\right)=$ $f_{\gamma n s}\left(S_{3}\right)=1$ so that $f_{\gamma n s}(G)=1$.

G
Figure 2.1
The next theorem follows immediately from the definition of the nonsplit domination number and the forcing nonsplit domination number of a connected graph G.

Theorem 2.3. For every connected graph $G, 0 \leq f_{\gamma n s}(G) \leq \gamma_{n s}(G)$.
Theorem 2.4. Let G be a connected graph with diameter at least 3. Then $\gamma_{n s}(G) \leq n-2$.

Proof. Let $P: x_{0}, x_{1}, x_{2}, \ldots, x_{p}$ be a diametral path in G. Since diameter of G is at least 3, P contains at least two internal vertices. Let $S=V-\left\{x_{1}, x_{2}\right\}$. Then S is a $\gamma_{n s}$-set of G so that $\gamma_{n s}(G) \leq n-2$.

Remark 2.5. The bound in Theorem 2.4 is sharp. For the graph $G=P_{n}(n \geq 4)$, $\gamma_{n s}(G)=n-2$.

Theorem 2.6. Let G be a connected graph with diameter at least 3. Then each end vertex of G belongs to every $\gamma_{n s}$-set of G.

Proof. Since diameter of G is at least 3, by Theorem 2.4, $\gamma_{n s}(G) \leq n-2$. Let S be a $\gamma_{n s}$-set of G. Let v be a cut vertex of G and $v x$ be an end edge of G. We prove that $x \in S$. Suppose that $x \notin S$. Then it follows that $v \in S$. This implies that S contains all the vertices of G except v. Therefore $\gamma_{n s}(G) \geq n-1$, which is a contradiction. Hence $x \in S$.

Remark 2.7. Theorem 2.6 need not be true if diameter is at most 2. For the star $G=K_{1, n-1}$ with $V(G)=\left\{v, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$, there exists a $\gamma_{n s}$-set S such that $v_{n-1} \notin S$.

Definition 2.8. A vertex v of a connected graph G is a nonsplit dominating vertex of G if v belongs to every nonsplit dominating set of G. If G has a unique nonsplit dominating set S, then every vertex of S is a nonsplit dominating vertex of G.

The proof of the following theorems are straightforward, so we omit the proofs.
Theorem 2.9. Let G be a connected graph.
(a) $f_{\gamma n s}(G)=0$ if and only if G has a unique minimum nonsplit dominating set.
(b) $f_{\gamma n s}(G)=1$ if and only if G has at least two minimum nonsplit dominating sets, one of which is a unique minimum nonsplit dominating set containing one of its elements, and
(c) $f_{\gamma n s}(G)=\gamma_{n s}(G)$ if and only if no minimum nonsplit dominating set of G is the unique minimum nonsplit dominating set containing any of its proper subsets.

Theorem 2.10. Let G be a connected graph and W be the set of all nonsplit dominating vertices of G. Then $f_{\gamma n s}(G) \leq \gamma_{n s}(G)-|W|$.

Corollary 2.11. Let G be a connected graph with $d \geq 3$ and l be the number of end vertices of G. Then $f_{\gamma n s}(G) \leq \gamma_{n s}(G)-l$.

Proof. This follows from Theorems 2.6 and 2.10.
Remark 2.12. The bound in Theorem 2.10 is sharp. For the graph G given in Figure 2.1, $S_{1}=\left\{v_{1}, v_{5}\right\}, S_{2}=\left\{v_{2}, v_{5}\right\}$ and $S_{3}=\left\{v_{3}, v_{5}\right\}$ are the only three $\gamma_{n s}$-sets of G such that $f_{\gamma n s}\left(S_{1}\right)=f_{\gamma n s}\left(S_{2}\right)=f_{\gamma n s}\left(S_{3}\right)=1$ so that $f_{\gamma n s}(G)=1$ and $\gamma_{n s}(G)=2$. Also, $W=\left\{v_{5}\right\}$ is the only nonsplit dominating vertex of G and so $f_{\gamma n s}(G)=\gamma_{n s}(G)-|W|$. Also, the inequality in Theorem 2.10, can be strict. For the graph G given in Figure 2.2, $S_{1}=\left\{v_{1}, v_{4}, v_{5}, v_{7}\right\}, S_{2}=\left\{v_{1}, v_{4}, v_{5}, v_{8}\right\}, S_{3}=$ $\left\{v_{2}, v_{3}, v_{5}, v_{7}\right\}, S_{4}=\left\{v_{2}, v_{3}, v_{5}, v_{8}\right\}, S_{5}=\left\{v_{2}, v_{4}, v_{5}, v_{7}\right\}$ and $S_{6}=\left\{v_{2}, v_{4}, v_{5}, v_{8}\right\}$ are the $\gamma_{n s}$-sets of G such that $f_{\gamma n s}\left(S_{i}\right)=2$ for $i=1$ to 4 and $f_{\gamma n s}\left(S_{i}\right)=3$ for $i=5,6$ so that $\gamma_{n s}(G)=4, f_{\gamma n s}(G)=2$ and $|W|=1$. Thus $f_{\gamma n s}(G)<\gamma_{n s}(G)-|W|$.

Figure 2.2
In the following we determine the forcing nonsplit domination number of some standard graphs.

Theorem 2.13. For the non trivial path $G=P_{n}(n \geq 2)$,
$f_{\gamma n s}(G)= \begin{cases}1, & \text { for } n=2 ; \\ 2, & \text { for } n=3 ; \\ 0, & \text { for } n=4 ; \\ 1, & \text { for } n=5,6 ; \\ \frac{n-3}{2}, & \text { for odd } n \geq 7 ; \\ \frac{n-2}{2}, & \text { for even } n \geq 8 .\end{cases}$
Proof. Let $P_{n}: v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}$. Let $n=2$. Then $S_{1}=\left\{v_{1}\right\}$ and $S_{2}=\left\{v_{2}\right\}$ are the only two $\gamma_{n s}$-sets of G such that $f_{\gamma n s}\left(S_{1}\right)=f_{\gamma n s}\left(S_{2}\right)=1$ so that $f_{\gamma n s}(G)=1$. Let $n=3$. Then $S_{1}=\left\{v_{1}, v_{2}\right\}, S_{2}=\left\{v_{1}, v_{3}\right\}$ and $S_{3}=\left\{v_{2}, v_{3}\right\}$ are the three $\gamma_{n s^{-}}$ sets of G such that $f_{\gamma n s}\left(S_{1}\right)=f_{\gamma n s}\left(S_{2}\right)=f_{\gamma n s}\left(S_{3}\right)=2$ so that $f_{\gamma n s}(G)=2$. Let $n=4$. Then $S=\left\{v_{1}, v_{4}\right\}$ is the unique $\gamma_{n s}$-set of G so that $f_{\gamma n s}(G)=0$. Let $n=5$. Then $S_{1}=\left\{v_{1}, v_{4}, v_{5}\right\}$ and $S_{2}=\left\{v_{1}, v_{2}, v_{5}\right\}$ are the only two $\gamma_{n s}$-sets of G such that $f_{\gamma n s}\left(S_{1}\right)=f_{\gamma n s}\left(S_{2}\right)=1$. Let $n=6$. Then $S_{1}=\left\{v_{1}, v_{4}, v_{5}, v_{6}\right\}, S_{2}=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$ and $S_{3}=\left\{v_{1}, v_{2}, v_{3}, v_{6}\right\}$ are the three $\gamma_{n s}$-sets of G such that $f_{\gamma n s}\left(S_{1}\right)=f_{\gamma n s}\left(S_{3}\right)=1$ and $f_{\gamma n s}\left(S_{2}\right)=2$ so that $f_{\gamma n s}(G)=1$.

For odd $n \geq 7$, there are $n-3 \gamma_{n s}$-sets viz., $S_{1}=\left\{v_{1}, v_{4}, v_{5}, \ldots, v_{n}\right\}, S_{2}=\left\{v_{1}, v_{2}, v_{5}\right.$, $\left.\ldots, v_{n}\right\}, S_{3}=\left\{v_{1}, v_{2}, v_{3}, v_{6}, \ldots, v_{n}\right\}, \ldots, S_{n-5}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-5}, v_{n-2}, v_{n-1}, v_{n}\right\}, S_{n-4}=$ $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-4}, v_{n-1}, v_{n}\right\}, S_{n-3}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-3}, v_{n}\right\}$. We observe that $T_{1}=$ $\left\{v_{4}, v_{6}, \ldots, v_{n-1}\right\}$ is a minimum forcing subset of S_{1} and so $f_{\gamma n s}\left(S_{1}\right)=\frac{n-3}{2}, T_{n-5}=$ $\left\{v_{2}, v_{4}, \ldots, v_{\frac{n-1}{2}}, v_{6}, v_{9}, \ldots, v_{n-2}\right\}$ is a minimum forcing subset of S_{n-5} and so $f_{\gamma n s}\left(S_{n-5}\right)=$ $\frac{n-3}{2}, T_{n-4}=\left\{v_{3}, v_{6}, \ldots, v_{\frac{n+1}{2}}, v_{7}, v_{10}, \ldots, v_{n-1}\right\}$ is a minimum forcing subset of S_{n-4} and so $f_{\gamma n s}\left(S_{n-4}\right)=\frac{n-3}{2}$ and $T_{n-3}=\left\{v_{2}, v_{4}, v_{6}, \ldots, v_{n-3}\right\}$ is a minimum forcing subset of S_{n-3} and so $f_{\gamma n s}\left(S_{n-3}\right)=\frac{n-3}{2}$. For $i=2,4,6, \ldots, n-7, S_{i}=\left\{v_{1}, v_{2}, \ldots, v_{i}, v_{i+3}, v_{i+4}, \ldots, v_{n}\right\}$. Then $T_{i}=\left\{v_{2}, v_{4}, \ldots, v_{i}, v_{i+3}, v_{i+5}, \ldots, v_{n-2}\right\}$ is a minimum forcing subset of S_{i} and so $f_{\gamma n s}\left(S_{i}\right)=\frac{n-3}{2}$. For $j=3,5,7, \ldots, n-6, S_{j}=\left\{v_{1}, v_{2}, \ldots, v_{i}, v_{i+3}, v_{i+4}, \ldots, v_{n}\right\}$. Then $T_{j}=\left\{v_{3}, v_{5}, \ldots, v_{j+2}, v_{j+5}, \ldots, v_{n-1}\right\}$ is a minimum forcing subset of S_{j} and so $f_{\gamma n s}\left(S_{j}\right)=\frac{n-3}{2}$. Therefore $f_{\gamma n s}(G)=\frac{n-3}{2}$ for odd $n \geq 7$.

For even $n \geq 8$, there are $n-3 \gamma_{n s}$-sets viz., $S_{1}=\left\{v_{1}, v_{4}, v_{5}, \ldots, v_{n}\right\}, S_{2}=\left\{v_{1}, v_{2}, v_{5}\right.$, $\left.\ldots, v_{n}\right\}, S_{3}=\left\{v_{1}, v_{2}, v_{3}, v_{6}, \ldots, v_{n}\right\}, \ldots, S_{n-5}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-5}, v_{n-2}, v_{n-1}, v_{n}\right\}, S_{n-4}=$ $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-4}, v_{n-1}, v_{n}\right\}, S_{n-3}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-3}, v_{n}\right\}$. Then $T_{1}=\left\{v_{4}, v_{6}, \ldots, v_{n}\right\}$ is a minimum forcing subset of S_{1} and so $f_{\gamma n s}\left(S_{1}\right)=\frac{n-2}{2}, T_{n-5}=\left\{v_{3}, v_{5}, \ldots, v_{\frac{n}{2}+1}, v_{\frac{n-2}{2}}\right.$, $\left.\ldots, v_{n-1}\right\}$ is a minimum forcing subset of S_{n-5} and so $f_{\gamma n s}\left(S_{n-5}\right)=\frac{n-2}{2}, T_{n-4}=$ $\left\{v_{2}, v_{4}, \ldots, v_{\frac{n}{2}}, v_{\frac{n}{2}+2}, \ldots, v_{n-1}\right\}$ is a minimum forcing subset of S_{n-4} and so $f_{\gamma n s}\left(S_{n-4}\right)=$ $\frac{n-2}{2}$ and $T_{n-3}=\left\{v_{2}, v_{4}, \ldots, v_{\frac{n}{2}}, v_{\frac{n}{2}+2}, \ldots, v_{n-3}\right\}$ is a minimum forcing subset of S_{n-3} and so $f_{\text {rns }}\left(S_{n-3}\right)=\frac{n-2}{2}$. For $i=2,4,6, \ldots, n-6, S_{i}=\left\{v_{1}, v_{2}, \ldots, v_{i}, v_{i+3}, v_{i+4}, \ldots, v_{n}\right\}$. Then $T_{i}=\left\{v_{2}, v_{4}, \ldots, v_{i}, v_{i+3}, v_{i+5}, \ldots, v_{n-1}\right\}$ is a minimum forcing subset of S_{i} and so $f_{\gamma n s}\left(S_{i}\right)=\frac{n-2}{2}$. For $j=3,5,7, \ldots, n-7, S_{j}=\left\{v_{1}, v_{2}, \ldots, v_{i}, v_{i+3}, v_{i+4}, \ldots, v_{n}\right\}$. Then $T_{j}=\left\{v_{2}, v_{4}, \ldots, v_{j-2}, v_{j}, v_{j+1}, v_{j+3}, \ldots, v_{n-3}\right\}$ is a minimum forcing subset of S_{j} and so $f_{\gamma n s}\left(S_{j}\right)=\frac{n-2}{2}$. Therefore $f_{\gamma n s}(G)=\frac{n-2}{2}$ for even $n \geq 8$.

Theorem 2.14. For the complete graph $G=K_{n}(n \geq 2), f_{\gamma n s}(G)=1$.
Proof. For $G=K_{n}$, any singleton subset of G is a $\gamma_{n s}$-set of G so that $\gamma_{n s}(G)=1$. Since $n \geq 2, G$ contains more than one $\gamma_{n s}$-set and so $f_{\gamma n s}(G) \geq 1$. By Theorem 2.3, $f_{\gamma n s}(G)=1$.

THEOREM 2.15. For the complete bipartite graph $G=K_{r, s}(2 \leq r \leq s), f_{\gamma n s}(G)=$ 2.

Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$ be the bipartite sets of G. Let $S_{i j}=\left\{x_{i}, y_{j}\right\}(1 \leq i \leq r)$ and $(1 \leq j \leq s)$. Then $S_{i j}$ is a $\gamma_{n s}$-set of G so that $\gamma_{n s}(G)=2$. Since any singleton subset of $S_{i j}$ is a subset of more than one $\gamma_{n s}$-set of G for some i and j. Therefore $f_{\gamma n s}(G) \geq 2$. By Theorem 2.3, $f_{\gamma n s}(G)=2$.

Theorem 2.16. For the star $G=K_{1, n-1}, f_{\gamma n s}(G)=n-1$.
Proof. Let v be the center and $v_{1}, v_{2}, \ldots, v_{n-1}$ be the set of all end vertices of G. Then $S=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}, S_{1}=\left\{v, v_{2}, v_{3}, \ldots, v_{n-1}\right\}, S_{2}=\left\{v, v_{1}, v_{3}, \ldots, v_{n-1}\right\}, \ldots, S_{n-1}=$ $\left\{v, v_{1}, v_{2}, \ldots, v_{n-2}\right\}$ are the $\gamma_{n s}$-sets of G with cardinality $n-1$. We notice that no $\gamma_{n s}$-set of G is the unique $\gamma_{n s}$-set containing any of its proper subsets. Therefore $f_{\gamma n s}(G)=\gamma_{n s}(G)=n-1$.

Theorem 2.17. For the cycle $G=C_{n}(n \geq 3), f_{\gamma n s}(G)=\gamma_{n s}(G)=n-2$.
Proof. Let $C_{n}: v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}$ be the cycle of order n. Then $S_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n-2}\right\}$, $S_{2}=\left\{v_{2}, v_{3}, v_{4}, \ldots, v_{n-2}, v_{n-1}\right\}, S_{3}=\left\{v_{3}, v_{4}, \ldots, v_{n-1}, v_{n}\right\}, \ldots, S_{n}=\left\{v_{n}, v_{1}, v_{2}, v_{3}, \ldots, v_{n-3}\right\}$ are the $\gamma_{n s}$ - sets of G with cardinality $n-2$. We notice that no $\gamma_{n s}$-set of G is the unique $\gamma_{n s}$-set containing any of its proper subsets. Therefore $f_{\gamma n s}(G)=\gamma_{n s}(G)=$ $n-2$.

THEOREM 2.18. Let G be a connected graph without cut vertices. If $\Delta(G)=n-1$, then $0 \leq f_{\gamma n s}(G) \leq 1$.

Proof. By the definition of forcing nonsplit domination number, we have $f_{\gamma n s}(G) \geq$ 0 . Since G contains no cut vertices, $\gamma_{n s}(G)=1$. By Theorem 2.3, $f_{\gamma n s}(G) \leq 1$. Thus $0 \leq f_{\gamma n s}(G) \leq 1$.

The following theorem shows the sharpness of the lower and the upper bounds.
Theorem 2.19. Let G be a connected graph of order $n \geq 4$ without cut vertices and $\Delta(G)=n-1$.
(i) If G contains only one universal vertex, then $f_{\gamma n s}(G)=0$.
(ii) If G contains more than one universal vertex, then $f_{\gamma n s}(G)=1$.

Proof. (i) Let u be the universal vertex of G which is not a cut vertex. Then $S=\{u\}$ is the unique $\gamma_{n s}$-set of G so that $f_{\gamma n s}(G)=0$.
(ii) Suppose that G contains more than one universal vertex. Let $x_{1}, x_{2}, \ldots, x_{r}$, $(2 \leq r \leq n)$ be the universal vertices of G. Since G contains no cut vertices, $S_{i}=\left\{x_{i}\right\}$ is a $\gamma_{n s}$-set of G for $1 \leq i \leq r$ such that $f_{\gamma n s}\left(S_{i}\right)=1$ for all $1 \leq i \leq r$. Therefore $f_{\gamma n s}(G)=1$.

Lemma 2.20. Let $G=K_{1}+\left(m_{1} K_{1} \cup m_{2} K_{2} \cup m_{3} K_{3} \cup \ldots \cup m_{r} K_{r}\right)$, where $m_{1}+$ $m_{2}+m_{3}+\ldots m_{r} \geq 2$ and S be a $\gamma_{n s}$-set of G. If $\delta(G) \geq 2$, then S contains at least one element from each component of $G-v$, where $V\left(K_{1}\right)=\{v\}$.

Proof. Let v be the cut vertex of G and S be a $\gamma_{n s}$-set of G. Let $G_{1}, G_{2}, \ldots, G_{r}(r \geq 2)$ be the components of $G-v$. Since $\delta(G) \geq 2,\left|V\left(G_{i}\right)\right| \geq 2$ for all $i(1 \leq i \leq r)$. Let x_{i} be a vertex of $V\left(G_{i}\right)$ for all $i, 1 \leq i \leq r$. We prove that S contains at least one element from each $G_{i}(1 \leq i \leq r)$. On the contrary, suppose that there exists a component say G_{1}, such that \bar{S} contains no elements of G_{1}. Then it follows that
$v \in S$ and S contains all the elements from each G_{i} for all $i(2 \leq i \leq r)$ and so $\gamma_{n s}(G) \geq 1+2(r-1)=2 r-1$. Let $S_{1}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{r}\right\}$. Then S_{1} is a $\gamma_{n s}$-set of G so that $\gamma_{n s}(G)=r<2 r-1$, which is a contradiction. Therefore S contains at least one element from each component of $G-v$.

Theorem 2.21. $\operatorname{Let} G=K_{1}+\left(m_{1} K_{1} \cup m_{2} K_{2} \cup m_{3} K_{3} \cup \ldots \cup m_{r} K_{r}\right)$, where $m_{1}+$ $m_{2}+m_{3}+\ldots m_{r} \geq 2$. If $\delta(G) \geq 2$, then $f_{\gamma n s}(G)=\gamma_{n s}(G)$.

Proof. Let v be the cut vertex of G and S be a $\gamma_{n s}$-set of G. Let $G_{1}, G_{2}, \ldots, G_{r}(r \geq 2)$ be the components of $G-v$. Since $\delta(G) \geq 2,\left|V\left(G_{i}\right)\right| \geq 2$ for $1 \leq i \leq r$. Let $x_{i}, y_{i} \in V\left(G_{i}\right)$ for $1 \leq i \leq r$ and let $H_{i}=\left\{x_{i}, y_{i}\right\}(1 \leq i \leq r)$. By Lemma 2.20, S contains at least one element from each $H_{i}(1 \leq i \leq r)$ and so $\gamma_{n s}(G) \geq r$. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$. Then S is a minimum nonsplit dominating set of G so that $\gamma_{n s}(G)=r$.

Next we show that $f_{\gamma n s}(G)=r$. Since $\gamma_{n s}(G)=r$ and every $\gamma_{n s}$-set of G contains at least one element from each $H_{i}(1 \leq i \leq r)$, it is easily seen that every $\gamma_{n s}$-set is of the form $S=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$, where $c_{i} \in H_{i}(1 \leq i \leq r)$. Let T be a proper subset of S with $|T|<r$. Then there exists some i such that $H_{i} \cap T=\phi$ which shows that $f_{\gamma n s}(G)=r=\gamma_{n s}(G)$.

3. Realization results

In this section, we present some graphs from which various graphs arising in theorems are generated using identification.

Definition 3.1. Let $P_{i}: u_{i}, v_{i}(1 \leq i \leq a)$ be a copy of path on two vertices and let $P_{i}^{\prime}: x_{i}, y_{i}(1 \leq i \leq b)$ be another copy of path on two vertices. Let $J_{a, b}$ be the graph obtained from $P_{i}(1 \leq i \leq a)$ and $P_{i}^{\prime}(1 \leq i \leq b)$ by adding a new vertex x and introducing the edges $x x_{i}(1 \leq i \leq b), x u_{i}(1 \leq i \leq a)$ and $x v_{i}(1 \leq i \leq a)$.

Definition 3.2. Let $K_{3}^{i}: x_{i}, y_{i}, z_{i}(1 \leq i \leq a)$ be a copy of the complete graph K_{3}. Let G_{a} be the graph obtained from K_{3}^{i} by adding a new vertex x and introducing the edges $x x_{i}(1 \leq i \leq a)$ and $x z_{i}(1 \leq i \leq a)$.

Definition 3.3. Let $K_{4}^{i}: p_{i}, q_{i}, r_{i}, s_{i}(1 \leq i \leq a)$ be a copy of the complete graph K_{4}. Let H_{a} be the graph obtained from $K_{4}^{i}(1 \leq i \leq a)$ by adding new vertices $y, t_{1}, t_{2}, \ldots, t_{a}$ and introducing the edges $y p_{i}, y q_{i}$ and $s_{i} t_{i}(1 \leq i \leq a)$.

Definition 3.4. Let $P_{i}: u_{i}, v_{i}(1 \leq i \leq a)$ be a copy of path on two vertices. Let R_{a} be the graph obtained from $P_{i}(1 \leq i \leq a)$ by adding the vertex z and introducing the edges $z u_{i}(1 \leq i \leq a)$.

In view of Theorem 2.3, we have the following realization result.
Theorem 3.5. For every pair of positive integers a and b with $0 \leq a \leq b$ and $b \geq 1$, there exists a connected graph G such that $f_{\gamma n s}(G)=a$ and $\gamma_{n s}(G)=b$.

Proof. Case 1. $a=0, b \geq 1$.
Subcase 1.1. $a=0, b=1$. Consider the graph $G=F_{n}(n \geq 5)$. Since G contains only one universal vertex, $\gamma_{n s}(G)=1$ and by Theorem 2.19 (i) $f_{\gamma n s}(G)=0$.

Subcase 1.2. $a=0, b=2$. Consider the graph G given in Figure 3.1. Then $S=\left\{v_{1}, v_{6}\right\}$ is the unique $\gamma_{n s}$-set of G so that $\gamma_{n s}(G)=2$ and $f_{\gamma n s}(G)=0$.

G
Figure 3.1
Subcase 1.3. $a=0, b \geq 3$. Let G be the graph obtained from a path $P_{b}(b \geq 3)$ by adding an end edge to each vertex of P_{b}. Since $b \geq 3$, the diameter is at least 3 . Let S be the set of end vertices of G. Then by Theorem $2.6, S$ is a subset of every $\gamma_{n s}$-set of G and so $\gamma_{n s}(G) \geq b$. Since S is the unique $\gamma_{n s}$-set of G, it follows from Theorem 2.10 (a) that $f_{\gamma n s}(G)=0$ and $\gamma_{n s}(G)=b$.

Case 2. $0<a=b$. Let $G=K_{1}+a K_{2}(a \geq 1)$. Then by Theorem 2.21, we have $\gamma_{n s}(G)=f_{\gamma n s}(G)=a$.

Case 3. $0<a<b$. Consider the graph $G=J_{a, b-a}$. First we show that $\gamma_{n s}(G)=b$. Let $Y=\left\{y_{1}, y_{2}, \ldots, y_{b-a}\right\}$. By Theorem 2.6, Y is a subset of every minimum nonsplit dominating set of G. Let $A_{i}=\left\{u_{i}, v_{i}\right\}(1 \leq i \leq a)$. Then it is easily observed that every nonsplit dominating set of G contains at least one vertex from each $A_{i}(1 \leq i \leq a)$ and so $\gamma_{n s}(G) \geq b-a+a=b$. Let $S=Y \cup\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$. Then S is a minimum nonsplit dominating set of G so that $\gamma_{n s}(G)=b$. Next we show that $f_{\gamma n s}(G)=a$. By Corollary 2.11, $f_{\gamma n s}(G) \leq \gamma_{n s}(G)-|Y|=b-(b-a)=a$. Now, since $\gamma_{n s}(G)=b$ and Y is a subset of every minimum nonsplit dominating set of G, it is easily seen that every $\gamma_{n s}$-set of G is of the form $S^{\prime}=Y \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in A_{i}(1 \leq i \leq a)$. Let T be any proper subset of S^{\prime} with $|T|<a$. Then it is clear that there exists some i such that $T \cap A_{i}=\phi$, which shows that $f_{\gamma n s}(G)=a$.

Proposition 3.6. The difference $\left|f_{\gamma}(G)-f_{\gamma n s}(G)\right|$ can be arbitrarily large.
Proof. Consider the graph $J_{a, 2 a}(a \geq 2)$. We notice that $\gamma(G)=2 a+1$ and $f_{\gamma}(G)=2 a$. Also, by Theorem 3.5, $\gamma_{n s}(G)=3 a$ and $f_{\gamma n s}(G)=a$. Therefore $\left|f_{\gamma}(G)-f_{\gamma n s}(G)\right|=|2 a-a|=a$.

We know that $\gamma(G) \leq \gamma_{n s}(G)$. However, there was no known relationship between $f_{\gamma}(G)$ and $f_{\gamma n s}(G)$. So we have the following realization results.

Theorem 3.7. For every integer $a \geq 0$, there exists a connected graph G with $f_{\gamma}(G)=f_{\gamma n s}(G)=a$.

Proof. Case 1. $a=0$. Let $G=F_{n}(n \geq 5)$. Since G contains only one universal vertex, $f_{\gamma}(G)=0$. By Theorem 2.19 (i), $f_{\gamma n s}(G)=0$.

Case 2. $a \geq 1$. Consider the graph $G=G_{a}$. First we prove that $\gamma(G)=a$. For $1 \leq i \leq a$, let $A_{i}=\left\{x_{i}, z_{i}\right\}$. It is easily observed that every minimum dominating set of G contains at least one vertex from each $A_{i}(1 \leq i \leq a)$ and so $\gamma(G) \geq a$. Let $D=\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$. Then D is a minimum dominating set of G so that $\gamma(G)=a$. Next we prove that $f_{\gamma}(G)=a$. Since $\gamma(G)=a$ and every minimum dominating set
of G contains at least one vertex from each $A_{i}(1 \leq i \leq a)$, it is easily seen that every γ-set is of the form $D_{1}=\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$ where $c_{i} \in A_{i}(1 \leq i \leq a)$. Let T be any proper subset of D_{1} with $|T|<a$. Then it is clear that there exists some i such that $T \cap A_{i}=\phi$, which shows that $f_{\gamma}(G)=a$.

Next we show that $\gamma_{n s}(G)=a$. It is easily observed that every nonsplit dominating set of G contains at least one vertex from each $A_{i}(1 \leq i \leq a)$ and so $\gamma_{n s}(G) \geq a$. Let $D=\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$. Then D is a minimum dominating set of G and $\langle V-D\rangle$ is connected. Hence D is a minimum nonsplit dominating set of G and so $\gamma_{n s}(G)=a$. By the similar argument as in the proof of $f_{\gamma}(G)=a$, we can prove that $f_{\gamma n s}(G)=a$.

Theorem 3.8. For every pair a, b of integers with $a \geq 0$ and $b \geq 0$ there exists a connected graph G such that $f_{\gamma}(G)=a$ and $f_{\gamma n s}(G)=b$.

Proof. Case 1. $0 \leq a \leq b$.
Subcase 1.1. $0 \leq a=b$. Then the graph constructed in Theorem 3.7 satisfies the requirements of this case.

Subcase 1.2. $a=0, b=1$. Let $G=K_{1,3}+e$. Then $f_{\gamma}(G)=0$ and $f_{\gamma n s}(G)=1$.
Subcase 1.3. $a=0, b \geq 2$. Consider the graph $G=H_{b}$. First we prove that $\gamma(G)=b+1$ and $f_{\gamma}(G)=0$. For $1 \leq i \leq b$, it is easily observed that every minimum dominating set contains the vertex y and each $s_{i}(1 \leq i \leq b)$ and so $\gamma(G)=b+1$. Let $D=\left\{y, s_{1}, s_{2}, \ldots, s_{b}\right\}$. Then D is the unique γ-set of G so that $\gamma(G)=b+1$ and $f_{\gamma}(G)=0$.

Next we prove that $\gamma_{n s}(G)=2 b$ and $f_{\gamma n s}(G)=b$. Let $Z=\left\{t_{1}, t_{2}, \ldots, t_{b}\right\}$. By Theorem 2.6, Z is a subset of every minimum nonsplit dominating set of G. For $1 \leq i \leq b$, let $B_{i}=\left\{p_{i}, q_{i}\right\}$. It is easily observed that every nonsplit dominating set of G contains at least one vertex from each $B_{i}(1 \leq i \leq b)$ and so $\gamma_{n s}(G) \geq 2 b$. Let $D_{1}=Z \cup\left\{p_{1}, p_{2}, \ldots, p_{b}\right\}$. Then D_{1} is a minimum nonsplit dominating set of G so that $\gamma_{n s}(G)=2 b$. By Corollary 2.11, $f_{\gamma n s}(G) \leq \gamma_{n s}(G)-|Z|=2 b-b=b$. Now, since $\gamma_{n s}(G)=2 b$ and Z is a subset of every minimum nonsplit dominating set, it is easily seen that every $\gamma_{n s}$-set D_{2} is of the form $D_{2}=Z \cup\left\{c_{1}, c_{2}, \ldots, c_{b}\right\}$ where $c_{i} \in B_{i}(1 \leq i \leq b)$. Let T be any proper subset of D_{2} with $|T|<b$. Then it is clear that there exists some i such that $T \cap B_{i}=\phi$, which shows that $f_{\gamma n s}(G)=b$.

Subcase 1.4. $0<a<b$. Let G be the graph obtained from G_{a} and H_{b-a} by identifying the vertex x of G_{a} and y of H_{b-a}. First we prove that $\gamma(G)=b$. For $1 \leq i \leq a$, let $A_{i}=\left\{x_{i}, z_{i}\right\}$. It is easily observed that every minimum dominating set of G contains the vertex $s_{i}(1 \leq i \leq b-a)$ and at least one vertex from each $A_{i}(1 \leq i \leq a)$ and so $\gamma(G) \geq b-a+a=b$. Let $Z=\left\{s_{1}, s_{2}, \ldots, s_{b-a}\right\}$ and $D_{3}=Z \cup\left\{x_{1}, x_{2}, \ldots ., x_{a}\right\}$. Then D_{3} is a minimum dominating set of G and so $\gamma(G)=b$. Next we prove that $f_{\gamma}(G)=a$. Now, since $\gamma(G)=b$ and Z is a subset of every γ-set of G, every γ-set is of the form $D_{4}=Z \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$ where $c_{i} \in A_{i}(1 \leq i \leq a)$. Let T be any proper subset of D_{4} with $|T|<a$. It is clear that there exists some i such that $T \cap A_{i}=\phi$, which shows that $f_{\gamma}(G)=a$.

Next we prove that $\gamma_{n s}(G)=2 b-a$. Let $Z_{1}=\left\{t_{1}, t_{2}, \ldots, t_{b-a}\right\}$. Then by Theorem 2.6, Z_{1} is a subset of every minimum nonsplit dominating set of G. For $1 \leq i \leq b-a$, let $B_{i}=\left\{p_{i}, q_{i}\right\}$. Then every minimum nonsplit dominating set of G contains at least one vertex from $A_{i}(1 \leq i \leq a)$ and at least one vertex from $B_{i}(1 \leq i \leq b-a)$ and so $\gamma_{n s}(G) \geq b-a+a+b-a=2 b-a$. Let $D_{5}=Z \cup\left\{x_{1}, x_{2}, \ldots ., x_{a}, p_{1}, p_{2}, \ldots, p_{b-a}\right\}$. Then D_{5} is a nonsplit dominating set of G so that $\gamma_{n s}(G)=2 b-a$. Next we prove that $f_{\gamma n s}(G)=b$. Since $\gamma_{n s}(G)=2 b-a$ and every $\gamma_{n s}$-set of G contains Z_{1}, it is easily
seen that every $\gamma_{n s}$-set is of the form $D_{6}=Z_{1} \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\} \cup\left\{d_{1}, d_{2}, \ldots, d_{b-a}\right\}$ where $c_{i} \in A_{i}(1 \leq i \leq a)$ and $d_{i} \in B_{i}(1 \leq i \leq b-a)$. Let T be any proper subset of D_{6} with $|T|<b$. Then it is clear that there exists some i and j such that $T \cap A_{i} \cap B_{j}=\phi$ which shows $f_{\gamma n s}(G)=b$.

Case 2. $0 \leq b<a$
Subcase 2.1. $b=0, a=1$. Consider the graph G given in Figure 3.2. Then $S_{1}=\left\{v_{1}, v_{3}\right\}$ and $S_{2}=\left\{v_{2}, v_{3}\right\}$ are the two γ-sets of G so that $\gamma(G)=2$ and $f_{\gamma}(G)=1$. Also, $S_{3}=\left\{v_{1}, v_{4}, v_{5}\right\}$ is the unique $\gamma_{n s}$-set of G and so $\gamma_{n s}(G)=3$ and $f_{\gamma n s}(G)=0$.

Figure 3.2
Subcase 2.2. $b=0, a \geq 2$. Consider the graph R_{a}. Let G be the graph obtained from R_{a} by adding two new vertices u and v and introducing the edges $z u$ and $z v$. First we show that $\gamma(G)=a+1$. For $1 \leq i \leq a$, let $T_{i}=\left\{u_{i}, v_{i}\right\}$. Then it is easily observed that every minimum dominating set of G contains the vertex z and at least one vertex from each $T_{i}(1 \leq i \leq a)$ and so $\gamma(G) \geq a+1$. Let $S_{4}=\{z\} \cup\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$. Then S_{4} is a minimum dominating set of G so that $\gamma(G)=a+1$. Next we prove that $f_{\gamma}(G)=a$. By Theorem 1.1, $f_{\gamma}(G) \leq \gamma(G)-|Z|$. Since $\gamma(G)=a+1$ and every γ-set of G contains z, it is easily seen that every γ-set is of the form $S_{5}=\{z\} \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in T_{i}(1 \leq i \leq a)$. Let T be a proper subset of S_{5} with $|T|<a$. Then it is clear that there exists some i such that $T \cap T_{i}=\phi$, which shows that $f_{\gamma}(G)=a$. Next we prove that $\gamma_{n s}(G)=a+2$ and $f_{\gamma n s}(G)=0$. Let $W=\left\{u, v, v_{1}, v_{2}, \ldots, v_{a}\right\}$. Then by Theorem 2.6, W is a subset of every minimum nonsplit dominating set of G and so $\gamma_{n s}(G) \geq a+2$. It is clear that W is the unique $\gamma_{n s}$-set of G so that $\gamma_{n s}(G)=a+2$ and $f_{\text {خns }}(G)=0$.

Subcase 2.3. $0<b<a$. Let G be the graph obtained from G_{b} and R_{a-b} by identifying the vertex x of G_{b} and the vertex z of R_{a-b} and also adding two new vertices u and v and introducing the edges $z u$ and $z v$. First we prove that $\gamma(G)=a+1$. For $1 \leq i \leq b$, let $A_{i}=\left\{x_{i}, y_{i}, z_{i}\right\}$ and for $1 \leq i \leq a-b$, let $B_{i}=\left\{u_{i}, v_{i}\right\}$. It is easily observed that every dominating set of G contains the vertex z and at least one vertex from each $A_{i}(1 \leq i \leq b)$ and at least one vertex from each $B_{i}(1 \leq i \leq a-b)$ and so $\gamma(G) \geq 1+b+a-b=a+1$. Now as in earlier cases, every γ-set of G is of the form $S_{6}=\{z\} \cup\left\{u_{1}, u_{2}, \ldots, u_{a-b}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{b}\right\}$. Then S_{6} is a minimum dominating set of G which shows that $\gamma(G)=1+a-b+b=a+1$. Next we prove that $f_{\gamma}(G)=a$. Since $\gamma(G)=a+1$ and every γ-set of G contains z, it is easily seen that every γ-set is of the form $S_{7}=\{z\} \cup\left\{c_{1}, c_{2}, \ldots, c_{b}\right\} \cup\left\{d_{1}, d_{2}, \ldots, d_{a-b}\right\}$ where $c_{i} \in A_{i}(1 \leq i \leq b)$ and $d_{i} \in B_{i}(1 \leq i \leq a-b)$. Let T be any proper subset of S_{7} with $|T|<a$. It is clear that there exists some i and j such that $T \cap A_{i} \cap B_{j}=\phi$, which shows that $f_{\gamma}(G)=a$.

Next we prove that $\gamma_{n s}(G)=a+2$ and $f_{\gamma n s}(G)=b$. Let $W_{1}=\left\{u, v, v_{1}, v_{2}, \ldots, v_{a-b}\right\}$. Then by Theorem 2.6, W_{1} is a subset of every minimum nonsplit dominating set of
G. It is easily observed that every nonsplit dominating set of G contains at least one vertex from $A_{i}(1 \leq i \leq b)$ and so $\gamma_{n s}(G) \geq a-b+2+b=a+2$. Let $S_{8}=W_{1} \cup\left\{x_{1}, x_{2}, \ldots, x_{b}\right\}$. Then S_{8} is a minimum nonsplit dominating set of G so that $\gamma_{n s}(G)=a-b+2+b=a+2$. Next we prove that $f_{\gamma n s}(G)=b$. Since $\gamma_{n s}(G)=a+2$ and every $\gamma_{n s}$-set of G contains W_{1}, it is easily seen that every $\gamma_{n s}$-set is of the form $S_{9}=W_{1} \cup\left\{c_{1}, c_{2}, \ldots, c_{b}\right\}$ where $c_{i} \in A_{i}(1 \leq i \leq b)$. Let T be any proper subset of S_{9} with $|T|<b$. Then it is clear that there exists some i such that $T \cap A_{i}=\phi$, which shows $f_{\gamma n s}(G)=b$.

Remark 3.9. (i) Let $C_{6}: v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{1}$. Let G be the graph obtained from C_{6} by introducing the edge $v_{1} v_{4}$. Then it is easily verified that $\gamma(G)=$ $2, f_{\gamma}(G)=0, \gamma_{n s}(G)=2$ and $f_{\gamma n s}(G)=1$. Thus $f_{\gamma}(G)<f_{\gamma n s}(G)<\gamma(G)=$ $\gamma_{n s}(G)$.
(ii) For the graph G given in Figure 3.3, $\gamma(G)=2, f_{\gamma}(G)=1, \gamma_{n s}(G)=2$ and $f_{\gamma n s}(G)=0$. Thus $f_{\gamma n s}(G)<f_{\gamma}(G)<\gamma(G)=\gamma_{n s}(G)$.
(iii) For $G=C_{6}, \gamma(G)=2$ and $\gamma_{n s}(G)=4$. Also, $f_{\gamma}(G)=1$ and $f_{\gamma n s}(G)=4$. Thus $f_{\gamma}(G)<\gamma(G)<f_{\gamma n s}(G)=\gamma_{n s}(G)$.

Figure 3.3
So we leave the following problem as open question.
Problem 1. For any four positive integers with $a \geq 0, b \geq 0, c \leq b \leq d$ and $d \geq 1$, does there exist a connected graph G such that $f_{\gamma}(G)=a, f_{\gamma n s}(G)=b, \gamma(G)=c$ and $\gamma_{n s}(G)=d$?

Acknowledments

We are thankful to the referees for their constructive and detailed comments and suggestions which improved the paper overall.

References

[1] H. Abdollahzadeh Ahangar and L. Pushpalatha, The forcing domination number of Hamiltonian Cubic graphs, International Journal of Mathematical Combinatorics 2 (2009), 53-57.
[2] D. Ali Mojdeh and N. Jafari Rad, On domination and its forcing in Mycielski's graphs, Scientia Iranica 15 (2) (2008), 218-222.
[3] C. L. Armada, S. R. Canoy, Jr. and C. E. Go, Forcing subsets for γ_{c}-sets and γ_{t}-sets in the Lexicographic Product of graphs, European Journal of Pure And Applied Mathematics 12 (4) (2019), 1779-1786.
[4] G. Chartrand, H. Gavlas, R. C. Vandell and F. Harary, The forcing domination number of a graph, Journal of Combinatorial Mathematics and Combinatorial Computing 25 (1997), 161174.
[5] R. Davila and M. A. Henning, Total forcing versus total domination in Cubic graphs, Applied Mathematics and Computation, 354 (2019), 385-395.
[6] D. Ferrero, L. Hogben, F. H. J. Kenter and M. Young, The relationship between k-forcing and k-power domination, Discrete Mathematics 341 (6) (2018), 1789-1797.
[7] M. Hajian, M. A. Henning and N. Jafari Rad, A new lower bound on the domination number of a graph, Journal of combinatorial Optimization, doi.org/10.1007/s10878-019-00409-x.
[8] F. Harary, Graph Theory, Addison-Wesley, (1969).
[9] T. W. Haynes, S. T. Hedetnimi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Incorporated, New York, (1998).
[10] J. John, V. Mary Gleeta, The forcing monophonic hull number of a graph, International Journal of Mathematics Trends and Technology 3 (2) (2012), 43-46.
[11] J. John, S. Panchali, The forcing monophonic number of a graph, International Journal of Mathematical Archive 3 (3) (2012), 935-938.
[12] S. Kavitha, S. Robinson Chellathurai and J. John, On the forcing connected domination number of a graph, Journal of Discrete Mathematical Sciences and Cryptography 23 (3) (2017), 611-624.
[13] V. R. Kulli and B. Janakiram, The nonsplit domination number of a graph, Indian Journal of Pure and Applied Mathematics 31 (5) (2000), 545-550.
[14] C. Sivagnanam and M. P. Kulandaivel, Complementary connected domination number and connectivity of a graph, General Mathematics Notes 29 (2), (2015), 27-35.
[15] A. P. Santhakumaran and J. John, The upper edge geodetic number and the forcing edge geodetic number of a graph, Opuscula Mathematica 29 (4) (2009), 427-441.
[16] A. P. Santhakumaran and J. John, The forcing Steiner number of a graph, Discussiones Mathematicae Graph Theory, 31 (2011), 171-181.
[17] A. P. Santhakumaran and J. John, On the forcing geodetic and the forcing Steiner numbers of a graph, Discussiones Mathematicae Graph Theory 31 (2011), 611-624.
[18] T. Tamizh Chelvam and B. J. Prasad, Complementary connected domination number, International Journal of Management Systems 18 (2) (2002), 147-154.

J. John

Department of Mathematics, Government College of Engineering,
Tirunelveli - 627 007, India.
E-mail: john@gcetly.ac.in

Malchijah Raj

Research Scholar, Research and Development Centre, Bharathiar University, Coimbatore - 641 046, India.
E-mail: malchijahraj@gmail.com

