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ARITHMETIC PROPERTIES OF TRIANGULAR

PARTITIONS

Byungchan Kim

Abstract. We obtain a two variable generating function for the
number of triangular partitions. Using this generating function, we
study arithmetic properties of a certain weighted count of triangular
partitions. Finally, we introduce a rank-type function for triangular
partitions, which gives a combinatorial explanation for a triangular
partition congruence.

1. Introduction

In a recent paper [7], the author initiates the study on counting
the number of orbits in the sets of various partitions under group ac-
tions. For example, for the set of tri-partitions T = {(π1, π2, π3) :
πi are ordinary partitions} and the symmetric group S3, a group action
is defined by

σ · (π1, π2, π3) =
(
πσ(1), πσ(2), πσ(3)

)
for σ ∈ S3. In [7], it is shown that∑

n≥0

|T/S3|(n)qn =
1

6

(
1

(q)3∞
+

3

(q)∞(q2; q2)∞
+

2

(q3; q3)∞

)
= 1 + q + 3q2 + 6q3 + 13q4 + 24q5 + · · · ,
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where |T/S3|(n) is the number of orbits having the weight n and the
weight means that the number being partitioned. Here and in the sequel,
we use the standard q-series notation:

(a)n = (a; q)n =
n∏
k=1

(
1− aqk−1

)
for n ∈ N0 ∪ {∞},

(a1, a2, . . . , ak)n = (a1, a2, . . . , ak; q)n = (a1; q)n(a2; q)n · · · (ak; q)n.

In T/S3, two partitions are considered to be same if they are in the same
orbit. We may interpret |T/S3|(n) as there is a partition πi on the vertex
i of the regular triangle and we consider tri-partitions (π1, π2, π3) are the
same if they are invariant under the group action, i.e. plane isometries
fixing the regular triangle. In this sense, the author [8] names |T/S3|(n)
as the number of triangular partitions of n and extends it to regular
polygons. For example, there are three triangular partitions of 2:

(2, φ, φ), (1 + 1, φ, φ), (1, 1, φ).

For convenience, by abusing the notation, we do not discriminate a repre-
sentative of the orbit and a triangular partitions. In the above example,
(2, φ, φ) is a representative of the orbit {(2, φ, φ), (φ, 2, φ), (φ, φ, 2)}. We
define T be the set of triangular partitions and t(n) be the number of
triangular partitions of n.

One of most important results in the theory of partitions [1] is Euler’s
pentagonal number theorem

(q)∞ =
∑
n∈Z

(−1)nqn(3n−1)/2.

By interpreting the left-hand side as a generating function for the dif-
ference between the number of partitions into even number of distinct
parts and the number of partitions into odd number of distinct parts,
Euler’s pentagonal number theorem implies that the difference is almost
always zero. Motivated from this, we define

tw(n) =
∑
m≥0

(−1)mt(n,m),

where t(n,m) is the number of triangular partitions with m parts. This
is well-defined as the total number of parts is same in all partitions in the
orbit. Thus, tw(n) is the difference between number of triangular parti-
tions with even parts and the number of triangular partitions with odd
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parts. To study tw(n), we first find a two variable generating function
for triangular partitions.

Proposition 1.1. We have

fT (z, q) :=
∑
n,m≥0

t(n,m)zmqn = 1 + zq +
(
2z2 + z

)
q2 +

(
3z3 + 2z2 + z

)
q3 + · · ·

=
1

6

(
1

(zq)3∞
+

3

(zq)∞(z2q2; q2)∞
+

2

(z3q3; q3)∞

)
.

Using the generating function and combinatorial arguments, we study
arithmetic properties of tw(n). It is straightforward to see that∑
n≥0

tw(n)qn = fT (−1, q)

= 1− q + q2 − 2q3 + 3q4 − 4q5 + 5q6 − 7q7 + 10q8 − 14q9 + 17q10 + · · · .
The first few coefficients looks sign-alternating and indeed this is the
case.

Theorem 1.2. For all non-negative integers n, (−1)ntw(n) is positive.

Moreover, the numeric shows that |tw(n)| is monotone and this is also
true.

Theorem 1.3. For all positive integers n,

|tw(n)| = |O3/S3|(n) + a(n),

where O3 = {(π1, π2, π3) : πi are partitions into distinct odd parts} and
a(n) is the number of partitions into parts 6≡ 2 (mod 4) with odd number
of even parts. Moreover, for all positive integers n > 1,

|tw(n+ 1)| > |tw(n)|.

In [7], it is shown that

t(3n+ 2) ≡ 0 (mod 3).

To give a combinatorial explanation on Ramanujan’s partition congru-
ences, Dyson [5] defined a rank of partition as the size of the largest
part minus the number of parts. Let N(i,m, n) be the number of parti-
tions of n with rank ≡ i (mod m), then Atkin and Swinnerton-Dyer [3]
confirmed Dyson’s conjecture:

N(0, 5, 5n+ 4) = N(1, 5, 5n+ 4) = · · · = N(4, 5, 5n+ 4)

N(0, 7, 7n+ 5) = N(1, 7, 7n+ 5) = · · · = N(6, 7, 7n+ 5),
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which implies that p(5n + 4) ≡ 0 (mod 5) and p(7n + 5) ≡ 0 (mod 7),
where p(n) is the number of ordinary partitions of n. Motivated from
the partition rank, to give a combinatorial interpretation for triangular
partitions, here we define a polynomial rank for a triangular partition
π = (π1, π2, π3) as follows:

1. if all partitions π1, π2 and π3 are different, then we define

rankT (π; z) =
1

6

∑
σ∈S3

z#(πσ(2))−#(πσ(3)),

where #(µ) is the number of parts in the partition µ. Note that
there are six elements in the orbit of π, and thus for each π,
rankT (π; 1) = 1.

2. if exactly two of π1, π2, and π3 are same, then we may choose the
representative satisfying π2 = π3, so that we define

rankT (π; z) =
1

6

(
1 + z#(π1)−#(π2) + z#(π2)−#(π1)

+3zthe number of even parts in π1 −#(π2)
)
.

3. All three partitions π1, π2, and π3 are same, then we define

rankT (π; z) = 1.

To illustrate, here we list polynomial ranks in Table 1.
Employing the same argument used in the proof of Proposition 1.1 and

the inclusion-exclusion principle, we find the polynomial rank generating
function.

Theorem 1.4. Let |π| be the sum of parts in π = (π1, π2, π3) ∈ T .
Then,

RT (z, q) :=
∑
π∈T

rankT (π, z)q|π|

= 1 + (z + z−1 + 4)
q

6
+ (z2 + z−2 + 5z + 5z−1 + 6)

q2

6

+ (z3 + z−3 + 2z2 + 2z−2 + 8z + 8z−1 + 14)
q3

6
+ · · ·

=
1

6

(
1

(q, zq, z−1q)∞
+

3

(q, zq2, z−1q2; q2)∞
+

2

(q3; q3)∞

)
.

(1.1)
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Table 1. rank polynomials for triangular partitions for
n = 2 and n = 4

triangular partition π = (π1, π2, π3) rankT (π, z)
(2, φ, φ) 1

6
(1 + z + z−1 + 3z)

(1 + 1, φ, φ) 1
6

(1 + z2 + z−2 + 3)
(φ, 1, 1) 1

6
(1 + z−1 + z1 + 3z−1)

(4, φ, φ) 1
6

(1 + z + z−1 + 3z)
(3 + 1, φ, φ) 1

6
(1 + z2 + z−2 + 3)

(2 + 2, φ, φ) 1
6

(1 + z2 + z−2 + 3z2)
(2 + 1 + 1, φ, φ) 1

6
(1 + z3 + z−3 + 3z)

(1 + 1 + 1 + 1, φ, φ) 1
6

(1 + z4 + z−4 + 3)
(3, 1, φ) 1

6
(z + z−1 + 1 + z−1 + 1 + z)

(φ, 2, 2) 1
6

(1 + z−1 + z + 3z−1)
(2 + 1, 1, φ) 1

6
(z + z−2 + z + z−1 + z−1 + z2)

(2, 1 + 1, φ) 1
6

(z2 + z−1 + z−1 + z−2 + z + z)
(2, 1, 1) 1

6
(1 + 1 + 1 + 3)

(1 + 1 + 1, 1, φ) 1
6

(z + z−3 + z2 + z−1 + z−2 + z3)
(φ, 1 + 1, 1 + 1) 1

6
(1 + z−2 + z2 + 3z−2)

(1 + 1, 1, 1) 1
6

(1 + z + z−1 + 3z−1)

Let
RT (z, q) =

∑
n≥0

tn(z)qn,

where tn(z) is a polynomial in Z[z, z−1]. We also define

rt(i,m, n) =
∑

j≡i (mod m)

[zj]tn(z),

where [zk]g(z) is the coefficient of zk in g(z). Then, we prove that
rt(i, 3, n) works as a rank function for triangular partitions.

Theorem 1.5. For all non-negative integers n,

rt(0, 3, 3n+ 2) = rt(1, 3, 3n+ 2) = rt(2, 3, 3n+ 2).

Since
∑2

j=0 rt(j, 3, 3n+ 2) = t(3n+ 2), we have

Corollary 1.6. For all non-negative integers n,

t(3n+ 2) ≡ 0 (mod 3).
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2. Proofs of Results

We start with the proof of Proposition 1.1.

Proof of Proposition 1.1. As in [7], we can employ Burnside Lemma
to count the number of orbits. It is well-known that

1

(zq)∞
=
∑
n,m≥0

p(n,m)zmqn,

where p(n,m) is the number of ordinary partitions of n with m parts.
Since S3 = D3, the dihedral group of order 6, we can see that the fixed
partition under the three reflections are generated by

1

(zq)∞(z2q2; q2)∞
,

and the fixed partition under the two rotations are generated by

1

(z3q3; q3)∞
.

In summary, we have shown that

fT (z, q) =
∑
n,m≥0

t(n,m)zmqn =
1

6

(
1

(zq)3∞
+

3

(zq)∞(z2q2; q2)∞
+

2

(z3q3; q3)∞

)

as desired.

Now we prove Theorem 1.2

Proof of Theorem 1.2. We first observe that

fT (−1,−q) =
∑
n,m≥0

(−1)mt(n,m)(−q)n =
∑
n≥0

(−1)ntw(n)qn.
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Moreover, by a q-series manipulation, we find that

fT (−1,−q)

=
1

6

(
1

(q;−q)3∞
+

3

(q;−q)∞(q2; q2)∞
+

2

(q3;−q3)∞

)
=

1

6

(
1

(q; q2)3∞(−q2; q2)3∞
+

3

(q; q2)∞(−q2; q2)∞(q2; q2)∞
+

2

(q3; q6)∞(−q6; q6)∞

)
=

1

6

(
(q2; q2)3∞

(q; q2)3∞(q4; q4)3∞
+

3

(q; q2)∞(q4; q4)∞
+ 2

(q6; q6)∞
(q3; q6)∞(q12; q12)∞

)

=
1

6

 1

(q4; q4)3∞

∑
n≥0

qn(n+1)/2

3

+
3

(q; q2)∞(q4; q4)∞
+

2

(q12; q12)∞

∑
n≥0

q3n(n+1)/2

 ,

where we have applied Gauss identity

(q2; q2)∞
(q; q2)∞

=
∑
n≥0

qn(n+1)/2.

From Gauss Eureka theorem, we know that every positive integers
can be represented as a sum of three triangular numbers. Let ∆3(n)
be the number of representations of n into three triangular numbers
(see [4, Chapter 3] for example). Since(∑

n≥0

qn(n+1)/2

)3

=
∑
n≥0

∆3(n)qn,

we can conclude that 1
(q4;q4)3∞

∑
n≥0 ∆3(n)qn has positive coefficients,

which gives the desirable positivity of (−1)ntw(n).

Before proceeding further, we remark that (−1)ntw(n) = |tw(n)| from
Theorem 1.2 and

1

(q4; q4)∞

∑
n≥0

qn(n+1)/2 =
(q2; q2)∞

(q; q2)∞(q4; q4)∞
=

(q2; q4)∞
(q; q2)∞

= (−q; q2)∞.

Using these two facts, we will rewrite fT (−1,−q) to interprets |tw(n)|.
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Proof. We first rewrite fT (−1,−q).
fT (−1,−q)

=
∑
n≥0

|tw(n)|qn

=
1

6

 1

(q4; q4)3∞

∑
n≥0

qn(n+1)/2

3

+
3

(q; q2)∞(−q4; q4)∞
+

2

(q12; q12)∞

∑
n≥0

q3n(n+1)/2


+

1

2(q; q2)∞

(
1

(q4; q4)∞
− 1

(−q4; q4)∞

)
=

1

6

(
(−q; q2)3∞ + 3(−q; q2)∞(−q2; q4)∞ + 2(−q3; q6)∞

)
+

1

2(q; q2)∞

(
1

(q4; q4)∞
− 1

(−q4; q4)∞

)
,

where we use

1

(q; q2)∞(−q4; q4)∞
=

(−q)∞
(−q4; q4)∞

= (−q; q2)∞(−q2; q4)∞.

By employing the same argument in the proof of Proposition 1.1, we see
that∑
n≥0

|O3/S3|(n)qn =
1

6

(
(−q; q2)3∞ + 3(−q; q2)∞(−q2; q4)∞ + 2(−q3; q6)∞

)
and it is immediate to see that∑

n≥0

a(n)qn =
1

2(q; q2)∞

(
1

(q4; q4)∞
− 1

(−q4; q4)∞

)
from 1/(zq)∞ =

∑
n,m≥0 p(n,m)zmqn.

Now we turn to prove the monotonicity. We start with noting that
a(n) is monotone since

(1− q)
∑
n≥0

a(n)qn =
1

2(q3; q2)∞

(
1

(q4; q4)∞
− 1

(−q4; q4)∞

)
=

1

(q3; q2)∞

(
q4 + q8 + 2q12 + · · ·

)
has non-negative coefficients. Moreover a(n) is strictly increasing for
n ≥ 7 as

7 = 4 + 3, 8 = 8, 9 = 5 + 4
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and we may add 3 as many as we want. To prove that |O3/S3|(n) is
monotone, we construct an injection. To this end, let TD be a set of
partitions counted by O3/S3 and TD(n) be the set of partitions counted
by |O3/S3|(n). We partition the set TD(n) into the subsets TDj,k(n)
consisting of partitions (π, µ, λ) ∈ TD(n) satisfying that the number of
partitions in the orbit containing (π, µ, λ) is j and the total number of
appearances of one as a part in the partitions π, µ, and λ is k. For the
partitions into distinct odd parts we say the partition π is larger then
the partition λ if |π| > |λ| or there is a J satisfying that πJ > λJ and
πi = λi for all i < J if |π| = |λ|, where we list parts in the partition
in non-increasing order. We denote π > λ if the partition π is larger
than the partition λ. We note that if (π, µ, λ) ∈ TD6,k, then we may
list partitions to be π > λ > µ. This is feasible since π, µ, and λ are
partitions into distinct odd parts. If (π, µ, λ) ∈ TD3,k, we assume that
µ and λ are the same partition.

For n > 3, we define a map ξ : TD(n) → TD(n + 1) according to
(π, µ, λ) ∈ TDj,k(n).

I-1. If (π, µ, λ) ∈ TD6,0(n), then we insert the part 1 to the largest
partition. The resulting partition is in the set TD6,3(n+ 1).

I-2. If (π, µ, λ) ∈ TD3,0(n) or TD1,0(n), then we insert the part 1 to π,
which implies that the resulting partition is in the set TD3,1(n+1).

II-1. Suppose that (π, µ, λ) ∈ TD6,1(n). Let π be the partition with the
part one. Then we delete the part one from π and insert the part
one to the other two partitions µ and λ. The resulting partition is
in the set TD6,2(n+ 1).

II-2. Suppose that (π, µ, λ) ∈ TD3,1(n). Note that π should have one
as a part. We delete one from π and insert the part one to the
other two partitions µ and λ. The resulting partition is in the set
TD3,2(n+ 1).

III-1. Suppose that (π, µ, λ) ∈ TD6,2(n). If there is a part 1 in the largest
partition, then we delete one from the partition and increase the
largest part by 2 for that partition. The resulting partition is in
the set TD6,1(n+ 1), but this is not overlapped with the case (I-1)
as the resulting partition has the part 1 in other than the largest
partition. If there is no part 1 in the largest partition, then we
append the part 1 in that partition. The resulting partition is now
in the set TD6,3(n+ 1).
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III-2. If (π, µ, λ) ∈ TD3,2(n), then we add one as a part to π. The
resulting partition is in either TD3,3(n+ 1) or TD1,3(n+ 1).

IV-1. If (π, µ, λ) ∈ TD6,3(n), then the largest partition has other parts
beside the part 1 since n > 3. We first delete all ones from the
partitions and we add 4 to the largest part of the unique largest
partition. The resulting partition is in TD6,0(n+ 1).

IV-2. Suppose that (π, µ, λ) ∈ TD3,3(n) or TD1,3(n) and π 6= (1). First
we delete all ones from the partitions and add 4 to the largest part
of π. The resulting partition is in the set TD3,0(n+ 1).

IV-3. If (π, µ, λ) ∈ TD3,3(n) with π = (1), then after deleting all ones
from the partitions, we add two to each of the largest part in µ and
λ. Since n > 3 and π = (1), µ and λ have parts other than 1. For
this case, the resulting partition is again in the set TD3,0(n+1), but
this is not overlapped with the case (IV-2) since the first component
of the image is φ.

The map ξ is clearly reversible because we can determine the pre-
image according to ξ(π, µ, λ) ∈ TDj,k(n + 1). Interested reader might
want to check

https://github.com/math-bkim/tri_ptn

for the examples generated by Python. We have seen that |O3/S3|(n +
1) ≥ |O3/S3|(n) for n > 3. For the strict inequality, we observe that
following partitions in TD(n+ 1) do not have a pre-image under ξ:

((2m+ 1, 2m− 1), (3), (3)) ∈ TD3,0(n+ 1) for n = 4m+ 5 ≥ 13,

((2m+ 1, 2m− 1), (5, 3), (3)) ∈ TD6,0(n+ 1) for odd n = 4m+ 10 ≥ 22.

((2m+ 1, 2m− 1), (5, 3), (5, 3)) ∈ TD3,0(n+ 1) for n = 4m+ 15 ≥ 27,

((2m+ 1, 2m− 1), (5, 3), (5)) ∈ TD6,0(n+ 1) for odd n = 4m+ 12 ≥ 24.

The above have no pre-image under ξ as the difference between the
largest part and the second largest part is exactly 2 in the first compo-
nent. Therefore, |O3/S3|(n) is strictly increasing for n ≥ 24. Thus, we
can conclude that |tw(n)| is strictly increasing by checking up to q24 of
the generating function T (−1,−q).

Now we proceed to study a rank-type function for triangular parti-
tions.

https://github.com/math-bkim/tri_ptn
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Proof of Theorem 1.4. By employing the inclusion-exclusion princi-
ple, we see that

R1(z, q) =
1

6

(
1

(q, zq, z−1q)∞
− 1

(q)∞(q2; q2)∞
− 1

(zq)∞(z−1q2; q2)∞

− 1

(z−1q)∞(zq2; q2)∞
+

2

(q3; q3)∞

)
R2(z, q) =

1

6

(
1

(q)∞(q2; q2)∞
+

1

(zq)∞(z−1q2; q2)∞
+

1

(z−1q)∞(zq2; q2)∞

+
3

(q, zq2, z−1q2; q2)∞
− 6

(q3; q3)∞

)
R3(z, q) =

1

(q3; q3)∞

are generating functions corresponding to each case in the definition of
rank polynomials for triangular partitions. It is immediate that

RT (z, q) = R1(z, q) +R2(z, q) +R3(z, q).

Now we prove that rt(j, 3, 3n+ 2) are all same.

Proof of Theorem 1.5. We first observe that

6RT (ζ, q) =
∑
n≥0

6
(
rt(0, 3, n) + rt(1, 3, n)ζ + rt(2, 3, n)ζ2

)
qn,

where ζ = exp(2πi/3) is the primitive third roof of unity. Now we derive
that

6RT (ζ, q) =
1

(q, ζq, ζ−1q)∞
+

3

(q, ζq2, ζ−1q2; q2)∞
+

2

(q3; q3)∞

=
3

(q3; q3)∞
+

3(q2; q2)∞
(q; q2)∞(q6; q6)∞

=
3

(q3; q3)∞
+

3

(q6; q6)∞

∑
n≥0

qn(n+1)/2,

where we use Gauss identity and 1 − x3 = (1 − x)(1 − ζx)(1 − ζ−1x).
Thus, we find that the coefficients of q3n+2 of 6RT (ζ, q) is zero, i.e.

rt(0, 3, 3n+ 2) + rt(1, 3, 3n+ 2)ζ + rt(2, 3, 3n+ 2)ζ2 = 0.
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Since 1 + ζ + ζ2 is a minimal polynomial in Z[ζ] we can conclude that
the desired result.

3. Concluding Remark

It is nice if one can define a rank function from T to Z as the ordinary
partition rank. Like a vector crank of Garvan [6] played a fundamental
role in the development of Andrews-Garvan crank [2], it would be great
if one can deduce a more natural rank function on triangular partitions
from polynomial ranks.
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