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GROWTH OF SOLUTIONS OF LINEAR

DIFFERENTIAL-DIFFERENCE EQUATIONS WITH

COEFFICIENTS HAVING THE SAME LOGARITHMIC ORDER

Nityagopal Biswas

Abstract. In this paper, we investigate the relations between the growth of mero-
morphic coefficients and that of meromorphic solutions of complex linear differential-
difference equations with meromorphic coefficients of finite logarithmic order. Our
results can be viewed as the generalization for both the cases of complex linear
differential equations and complex linear difference equations.

1. Introduction and Preliminaries

We assume that the readers are familiar with the fundamental results and the stan-
dard notations of the Nevanlinna’s theory of meromorphic functions and the theory
of complex linear differential equations in the complex plane C which are available
in [9, 10]. Recently, the properties of meromorphic solutions of complex difference
equations have become a subject of great interest from the viewpoint of Nevanlinna’s
theory and its difference analogues. Since then, many authors investigated the lin-
ear difference equations for example, [5, 11, 12]. In [11], Laine and Yang considered
complex linear difference equations and obtained the following theorem.

Theorem 1.1. [11] Let A0 (z) , ..., An (z) be entire functions of finite order such
that among those having the maximal order σ = max

0≤k≤n
σ (Ak), exactly one has its type

strictly greater than the others. Then for any meromorphic solution f (6≡ 0) of

An (z) f (z + wn) + ...+ A1 (z) f (z + w1) + A0 (z) f (z) = 0,

where w1, ..., wn are distinct complex numbers, we have σ (f) ≥ σ + 1.

Liu-Mao [12] considered the hyper-order of meromorphic solutions of the non-
homogeneous linear difference equation

(1.1) Ak(z)f(z + k) + · · ·+ A1(z)f(z + 1) + A0(z)f(z) = F (z),

where k ∈ N+, and obtained the following theorem.
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Theorem 1.2. [12] Let Aj (j = 0, 1, ..., k) and F (z) (6≡ 0) be entire functions. If
there exists an integer l (0 ≤ l ≤ k) such that

max {σ2 (Aj) ; j = 0, 1, ..., k, j 6= l} ≤ σ2 (Al) , (0 < σ2 (Al) <∞)

and

max {τ2 (Aj) : σ2 (Aj) = σ2 (Al) ; j = 0, 1, ..., k, j 6= l} < τ2 (Al) , (0 < τ2 (Al) <∞) ,

then
(i) If σ2 (F ) < σ2 (Al) or σ2 (F ) = σ2 (Al) and τ2 (F ) < τ2 (Al) , then every mero-

morphic solution f (z) (6≡ 0) of Equation (1.1) satisfies σ (f) = ∞ and σ2 (f) ≥
σ2 (Al) .

(ii) If σ2 (F ) > σ2 (Al) , then every meromorphic solution f (z) (6≡ 0) of Equation
(1.1) satisfies σ (f) =∞ and σ2 (f) ≥ σ2 (F ) .

From above theorems, we deduce that when there is exactly one dominant coef-
ficient among those coefficients having the same maximal order, we may obtain the
growth relation between the solutions and the coefficients of the given complex lin-
ear difference equations or complex linear differential equations. Recently, many au-
thors investigated the homogeneous and nonhomogeneous linear differential equations
{cf. [2, 8, 13]}. Very recently many authors investigated the growth of meromorphic
solutions of the linear differential-difference equations

(1.2)
n∑
i=0

m∑
j=0

Aij (z) f (j) (z + ci) = 0

and

(1.3)
n∑
i=0

m∑
j=0

Aij (z) f (j) (z + ci) = F (z) ,

and achieved many valuable results when the coefficients Aij (z) (i = 0, 1, ..., n; j =
0, 1, ...,m) and F (z) (6≡ 0) be entire or meromorphic functions of finite order and ci
(i = 0, 1, ..., n) are distinct complex constants {Cf. [6, 14, 15]}.

The theory of meromorphic functions of finite positive order is fairly complete as
compared to the theory of functions of order zero. Techniques that work well for
functions of finite positive order often do not work for functions of order zero. In
order to make some progress with functions of order zero many authors make use of
the concept of logarithmic order {Cf. [3,4]}. The logarithmic order of a meromorphic
function f is defined as

σlog (f) = lim sup
r→∞

log T (r, f)

log log r
,

f (z) is said to be of finite logarithmic order if the above limit superior is finite. It is
clear that if a meromorphic function f (z) has finite logarithmic order, then the order
of f (z) is zero. From the definition of logarithmic order, it is easily seen that the
logarithmic order of a constant function is zero and of a non-constant rational function
is 1. For a transcendental meromorphic function f (z) the logarithmic order is at least
1. There is no meromorphic function with logarithmic order strictly between 0 and
1. Revisiting their ideas we would like to prove some results using the concepts of
logarithmic order. In this connection, we recall the following definitions as follows.



Growth of meromorphic solutions of logarithmic order 475

We denote the linear measure for a set E ⊂ [0,∞), by m (E) =
∫
E
dt and logarith-

mic measure for a set E ⊂ (1,∞) , by ml (E) =
∫
E
dt
t
.

Definition 1.3. [4] The logarithmic order of a meromorphic function f is defined
as

σlog (f) = lim sup
r→∞

log T (r, f)

log log r
.

Definition 1.4. [4] The logarithmic type of a meromorphic function f with 1 ≤
σlog (f) <∞ is defined as

τlog (f) = lim sup
r→∞

T (r, f)

(log r)σlog(f)
.

Definition 1.5. [4] The logarithmic exponent of convergence of zeros and distinct
zeros of f are defined by

λlog (f) = lim sup
r→∞

log n
(
r, 1

f

)
log log r

and

λlog (f) = lim sup
r→∞

log n
(
r, 1

f

)
log log r

.

respectively, where n
(
r, 1

f

)
and n

(
r, 1

f

)
denote the number of zeros and number of

distinct zeros of f in |z| ≤ r respectively.

Definition 1.6. [9] For a ∈ C = C ∪ {∞}, the deficiency of a with respect to a
meromorphic function f is defined as

δ (a, f) = lim inf
r→+∞

m
(
r, 1

f−a

)
T (r, f)

= 1− lim sup
r→+∞

N
(
r, 1

f−a

)
T (r, f)

, a 6=∞,

δ (∞, f) = lim inf
r→+∞

m (r, f)

T (r, f)
= 1− lim sup

r→+∞

N (r, f)

T (r, f)
.

A natural problem arises that: how to express the growth of solutions of the Equa-
tion (1.3) when the coefficients Aij (z) (i = 0, 1, ..., n; j = 0, 1, ...,m) and F (z) (6≡ 0)
be meromorphic functions of finite logarithmic order. In the next section, we will give
a partial answer to the above question.

The main purpose of this paper is to used the concept of logarithmic order in the
complex plane to investigate the growth of solutions of linear differential-difference
equations. In this direction we obtain the following results.

Theorem 1.7. Let Aij (z) (i = 0, 1, ..., n; j = 0, 1, ...,m) and F (z) be meromor-
phic functions of finite logarithmic order. If there exists an integer (0 ≤ l ≤ n) satis-
fying

max {σlog (Aij) ; (i, j) 6= (l, 0)} < σlog (Al0) <∞ and δ (∞, Al0) > 0,

then
(i) If σlog (F ) < σlog (Al0) , then every meromorphic solution f (6≡ 0) of Equation

(1.3) of finite logarithmic order satisfies σlog (f) ≥ σlog (Al0) .
(ii) If σlog (F ) > σlog (Al0) , then every meromorphic solution f (6≡ 0) of Equation

(1.3) of finite logarithmic order satisfies σlog (f) ≥ σlog (F ) .
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For linear differential-difference Equation (1.3), we obtain the following theorem
under somewhat different conditions from Theorem 1.7.

Theorem 1.8. Let Aij (z) (i = 0, 1, ..., n; j = 0, 1, ...,m) and F (z) be meromor-
phic functions of finite logarithmic order. If there exists an integer (0 ≤ l ≤ n) such
that Al0 (z) satisfies

λlog

(
1

Al0

)
< σlog (Al0) <∞,

max {σlog (Aij) ; (i, j) 6= (l, 0)} ≤ σlog (Al0)

and ∑
σlog(Aij)=σlog(Al0)

(i,j)6=(l,0)

τlog (Aij) < τlog (Al0) <∞.

then
(i) If σlog (F ) < σlog (Al0) or σlog (F ) = σlog (Al0) and∑

σlog(Aij)=σlog(Al0)
(i,j) 6=(l,0)

τlog (Aij) + τlog (F ) < τlog (Al0)

or σlog (F ) = σlog (Al0) and
∑

σlog(Aij)=σlog(Al0)
(i,j) 6=(l,0)

τlog (Aij) < τlog (F ) , then every meromor-

phic solution f (6≡ 0) of Equation (1.3) of finite logarithmic order satisfies σlog (f) ≥
σlog (Al0) .

(ii) If σlog (F ) > σlog (Al0) , then every meromorphic solution f (6≡ 0) of Equation
(1.3) of finite logarithmic order satisfies σlog (f) ≥ σlog (F ) .

2. Preliminary Lemmas

To prove the above theorems, we need some lemmas as follows.

Lemma 2.1. [1] Let f be a meromorphic function with finite logarithmic order
1 ≤ σlog (f) < ∞ and finite logarithmic type 0 < τlog (f) < ∞, then for any given
β < τlog (f) there exists a subset E ⊂ [1,∞) of infinite logarithmic measure such that
for all r ∈ E, we have

T (r, f) > β (log r)σlog(f) .

Lemma 2.2. [1] Let η1, η2 be two arbitrary complex numbers such that η1 6= η2, and
let f be a meromorphic function of finite logarithmic order. Let σ be the logarithmic
order of f(z). Then for each ε > 0, we have

m

(
r,
f (z + η1)

f (z + η2)

)
= O

(
(log r)σ−1+ε

)
.

Remark 2.3. It is shown that { Cf. [7], p.66}, for an arbitrary complex number
c 6= 0, the following inequality

(1 + o (1))T (r − |c| , f (z)) ≤ T (r, f (z + c)) ≤ (1 + o (1))T (r + |c| , f (z)) ,

holds as r →∞ for an arbitrary meromorphic function f(z). Therefore, it is easy to
obtain that

σlog (f (z + c)) = σlog (f) , µlog (f (z + c)) = µlog (f) .
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3. Proof of Main Results

Proof of Theorem 1.7. (i) We suppose that f(z) has finite logarithmic order. We
divide (1.3) by f(z + cl) to obtain
(4.1)

−Al0 (z) =
n∑
i=0
i 6=l

m∑
j=0

Aij (z)
f (j) (z + ci)

f (z + ci)

f (z + ci)

f (z + cl)
+

m∑
j=1

Alj (z)
f (j) (z + cl)

f (z + cl)
− F (z)

f (z + cl)
.

By (4.1) and Remark 2.3, for sufficiently large r, we have

m (r, Al0) ≤
n∑
i=0
i 6=l

m∑
j=0

m (r, Aij) +
m∑
j=1

m (r, Alj) +
n∑
i=0
i 6=l

m∑
j=0

m

(
r,
f (j)(z + ci)

f(z + ci)

)

+
n∑
i=0
i 6=l

m

(
r,
f(z + ci)

f(z + cl)

)
+m

(
r,

F (z)

f (z + cl)

)
+O (1)

≤
n∑
i=0
i 6=l

m∑
j=0

T (r, Aij) +
m∑
j=1

T (r, Alj) +
n∑
i=0
i 6=l

m∑
j=0

m

(
r,
f (j)(z + ci)

f(z + ci)

)

(4.2) +
n∑
i=0
i 6=l

m

(
r,
f(z + ci)

f(z + cl)

)
+ T (r, F ) + (1 + o (1))T (r + |cl| , f) +O (1) .

In view of Lemma 2.2 it follows that for any given ε > 0, we have

(4.3) m

(
r,
f(z + ci)

f(z + cl)

)
= O

(
(log r)σlog(f)−1+ε

)
, i = 0, 1, . . . , n, i 6= l.

By the logarithmic derivative lemma and Remark 2.3, for sufficiently large r, we have

(4.4) m

(
r,
f (j)(z + ci)

f(z + ci)

)
= O (log r) , i = 0, 1, . . . , n, j = 1, 2, . . . ,m.

Let us set δ = δ(∞, Al0) > 0, then for sufficiently large r, we have

(4.5) m (r, Al0) ≥
δ

2
T (r, Al0) .

Substituting (4.3) , (4.4) and (4.5) into (4.2), we get for sufficiently large r that

δ

2
T (r, Al0) ≤

n∑
i=0
i 6=l

m∑
j=0

T (r, Aij) +
m∑
j=1

T (r, Alj) + T (r, F ) +O (log r)

(4.6) +O
(

(log r)σlog(f)−1+ε
)

+ 2T (2r, f) .

Then from (4.6), we obtain that

(4.7) σlog (Al0) ≤ max
(i,j)6=(l,0)

{σlog (f) , σlog (f)− 1 + ε, σlog (Aij) , σlog (F )} .

If σlog (F ) < σlog (Al0), then by (4.7) and the fact σlog (Aij) < σlog (Al0) , (i, j) 6= (l, 0),
we have σlog (f) ≥ σlog (Al0).
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(ii) If σlog (F ) > σlog (Al0), then on the contrary we may suppose that σlog (f) <
σlog (F ). By Equation (1.3) and Remark 2.3, we obtain that

σlog

(
n∑
i=0

m∑
j=0

Aij(z)f (j)(z + ci)

)
< σlog (F ) ,

which is a contradiction. Hence, we have σlog (f) ≥ σlog (F ).
This proves the theorem.

Proof of Theorem 1.8. (i) We suppose that f(z) has finite logarithmic order. If
σlog (F ) < σlog (Al0), or σlog (F ) = σlog (Al0) and∑

σlog(Aij)=σlog(Al0)
(i,j)6=(l,0)

τlog(Aij) + τlog(F ) < τlog(Al0),

then by (4.1) and Remark 2.3, we have for sufficiently large r,

T (r, Al0)

= m (r, Al0) +N (r, Al0)

≤
n∑
i=0
i 6=l

m∑
j=0

T (r, Aij) +
m∑
j=1

T (r, Alj) +
n∑
i=0
i 6=l

m∑
j=0

m

(
r,
f (j)(z + ci)

f(z + ci)

)

(4.8) +
n∑
i=0
i 6=l

m

(
r,
f(z + ci)

f(z + cl)

)
+T (r, F )+(1 + o (1))T (r + |cl| , f)+N (r, Al0)+O (1) .

Also (4.3) and (4.4) hold. From Lemma 2.1 it follows that for the above ε, there exists
a subset E ⊂ [1,∞) with infinite logarithmic measure such that for all r ∈ E and
r →∞, and so we have

(4.9) T (r, Al0) > (τlog (Al0)− ε) (log r)σlog(Al0) .

Let us denote

σ2 = max {σlog (Aij) : σlog (Aij) < σlog (Al0) ; (i, j) 6= (l, 0)} ,

and τ2 =
∑

σlog(Aij)=σlog(Al0)
(i,j)6=(l,0)

τlog (Aij) .

If σlog (Aij) < σlog (Al0), then for the above ε and sufficiently large r, we have

(4.10) T (r, Aij) ≤ (log r)σ2+ε .

If σlog (Aij) = σlog (Al0) , (i, j) 6= (l, 0), then for the above ε and sufficiently large r,
we have

(4.11) T (r, Aij) ≤ (τlog (Aij) + ε) (log r)σlog(Al0) , (i, j) 6= (l, 0) .

By the definition of λlog

(
1
Al0

)
, for the above ε and for sufficiently large r, we get that

(4.12) N (r, Al0) < (log r)
λlog

(
1

Al0

)
+ε
.
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If σlog (F ) < σlog (Al0), then for the above ε and sufficiently large r, we have

(4.13) T (r, F ) ≤ (log r)σlog(F )+ε .

Now, we may choose sufficiently small ε satisfying

0 < (k + 2)ε

< min

{
σlog (Al0)− λlog

(
1

Al0

)
, σlog (Al0)− σ2, σlog (Al0)− σlog (F ) , τlog (Al0)− τ2

}
,

Substitute(4.3) , (4.4) and (4.9)-(4.13) into (4.8), for r ∈ E and r → ∞, we obtain
that

(τlog (Al0)− τ2 − (k + 1) ε) (log r)σlog(Al0)

< O
(
(log r)σ2+ε

)
+ (log r)σlog(F )+ε + (log r)

λlog

(
1

Al0

)
+ε

(4.14) +O
(

(log r)σlog(f)+ε
)

+O (log r) .

From (4.14) , we get that σlog (f) ≥ σlog (Al0).
If σlog (F ) = σlog (Al0) and τ2 + τlog (F ) < τlog (Al0) , then for the above ε and

sufficiently large r, we have

(4.15) T (r, F ) ≤ (τlog(F ) + ε) (log r)σlog(Al0) .

Now, we may choose sufficiently small ε satisfying

0 < (k + 3)ε

< min

{
σlog (Al0)− λlog

(
1

Al0

)
, σlog (Al0)− σ2, τlog (Al0)− τlog (F )− τ2

}
.

Substitute(4.3) , (4.4) and (4.9)-(4.12) and (4.15) into (4.8) , for r ∈ E and r → ∞,
we obtain that

(τlog (Al0)− τlog (F )− τ2 − (k + 2) ε) (log r)σlog(Al0)

< O
(
(log r)σ2+ε

)
+ (log r)

λlog

(
1

Al0

)
+ε

(4.16) +O
(

(log r)σlog(f)+ε
)

+O (log r) .

From (4.16) , we get that σlog (f) ≥ σlog (Al0).
If σlog (F ) = σlog (Al0) and ∑

σlog(Aij)=σlog(Al0)

τlog(Aij) < τlog(F ),

then by Equation (1.3), Remark 2.3 and T
(
r, f (n)

)
≤ (n+1)T (r, f)+S(r, f), n ∈ N+,

we have that for sufficiently large r,

(4.17)

T (r, F ) ≤
∑

(i,j)6=(l,0)

T (r, Aij) + T (r, Al0) +
n∑
i=0

m∑
j=0

T (r, f (j)(z + ci))

≤
∑

(i,j)6=(l,0)

T (r, Aij) + T (r, Al0) +O(T (2r, f)) + S(r, f).
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If σlog (F ) = σlog (Al0) and τ2 + τlog(Al0) < τlog(F ), then by Lemma 2.1, for the above
ε, there exists a subset E ⊂ [1,∞) with infinite logarithmic measure such that for all
r ∈ E and r →∞, we have

(4.18) T (r, F ) > (τlog(F )− ε) (log r)σlog(Al0) .

By the definition of τlog(Al0), we have for the above ε and sufficiently large r,

(4.19) T (r, Al0) ≤ (τlog(Al0) + ε) (log r)σlog(Al0) .

Now, we may choose sufficiently small ε satisfying

0 < (k + 3)ε < min {σlog (Al0)− σ2, τlog(F )− τlog(Al0)− τ2} .

Substituting (4.10) , (4.11) , (4.18) and (4.19) into (4.17) , for r ∈ E and r →∞, we
obtain that

(τlog(F )− τlog(Al0)− τ2 − (k + 2)ε) (log r)σlog(Al0)

(4.20) < O((log r)σ2+ε) +O
(

(log r)σlog(f)+ε
)
.

Hence it follows by (4.20) that σlog (f) ≥ σlog (Al0).
(ii) If σlog(F ) > σlog (Al0), then on the contrary we may suppose that σlog(f) <

σlog(F ). By Equation (1.4) and Remark 2.3, we obtain that

σlog

(
n∑
i=0

m∑
j=0

Aij(z)f (j)(z + ci)

)
< σlog(F ),

which is a contradiction. Hence, we have σlog(f) ≥ σlog(F ).
The proves the theorem.

4. Future aspects

Keeping in mind the results already established, one may explore for analogous
theorems in which the coefficients of differential-difference equations are bi-complex
valued meromorphic functions of finite logarithmic order. Furthermore, the case in
which the coefficients of differential-difference equations are meromorphic functions of
finite logarithmic order in a sector of the unit disc is still a virgin domain for the new
researchers and therefore it may be posed as an open problem to the future workers
of this branch.
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