
Korean J. Math. 28 (2020), No. 3, pp. 573–585
http://dx.doi.org/10.11568/kjm.2020.28.3.573

ON THE GENERALIZED BOUNDARY

AND THICKNESS

Buhyeon Kang

Abstract. We introduced the concepts of the generalized accumu-
lation points and the generalized density of a subset of the Euclidean
space in [1] and [2]. Using those concepts, we introduce the concepts
of the generalized closure, the generalized interior, the generalized
exterior and the generalized boundary of a subset and investigate
some properties of these sets. The generalized boundary of a subset
is closely related to the classical boundary. Finally, we also introduce
and study a concept of the thickness of a subset.

1. Introduction

In this section, we introduce a concept of the generalized closure of
a set and study some properties of the generalized dense subset which
we need later. Throughout this paper, ε0 ≥ 0 denotes any, but fixed,
non-negative real number. We denote the open ball, the closed ball and
the sphere with radius ε and center at α in the space Rm by B(α, ε) =
{x ∈ Rm : ‖x − α‖ < ε}, B(α, ε) = {x ∈ Rm : ‖x − α‖ ≤ ε} and
S(α, ε) = {x ∈ Rm : ‖x− α‖ = ε}, respectively.

Definition 1.1. Let S be a subset of Rm. A point a ∈ Rm is an
ε0−accumulation point of the subset S if and only if B(a, ε)∩(S−{a}) 6=
∅ for all ε > ε0. And a point a ∈ S is an ε0−isolated point of S if and
only if B(a, ε1) ∩ (S − {a}) = ∅ for some positive number ε1 > ε0.
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Definition 1.2. For a subset S of Rm, we define the ε0−derived set
of S as the set of all the ε0−accumulation points of S and denote it by
S ′(ε0).

Definition 1.3. Let S be a subset of Rm. The ε0−closure of S is
defined by S(ε0) = Clε0(S) = S ′(ε0) ∪ S .

Definition 1.4. Let E be any non-empty and open subset of Rm

and ε0 ≥ 0. And let a subset D of E be given. We define that D is an
ε0−dense subset of E in E if and only if E ⊆ D(ε0). In this case, we say
that D is ε0−dense in E.

Definition 1.5. Let E be an open non-empty subset of Rm. And let
D be an ε0−dense subset of E in E. An element a ∈ D is called a point
of the ε0−dense ace of D in E if and only if D− {a} is not ε0−dense in
E.

Lemma 1.6. Let E be an open subset of Rm and D be a non-empty
subset of E. Suppose that E ⊆ ∪

b∈D
B(b, ε0). Then D is ε0−dense in E.

Proof. See the proof of the lemma 2.10 in [1].

Lemma 1.7. Let D be a non-empty subset of an open subset E of
Rm and D = D′(0) ∪ D. Then D is ε0−dense in E if and only if E ⊆
∪
b∈D

B(b, ε0).

Proof. See the proof of the theorem 2.11 in [1].

2. The generalized interior and boundary

In this section, we investigate about the concepts of the ε0−interior,
the ε0−exterior and the ε0−bouundary of subsets in Rm and research
the shapes of these sets. Throughout this section, ε0 ≥ 0 denotes any,
but fixed, non-negative real number unless otherwise stated.

Definition 2.1. Let S be a subset of Rm. A point x is called the
ε0−interior point of S if and only if there is a positive real number ε1 > ε0
such that x ∈ B(x, ε1) ⊆ S. Let’s denote the set of all the ε0−interior
points of S in Rm by Intε0(S) or So(ε0).
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Definition 2.2. Let S be a subset of Rm. A point x is called the
ε0−boundary point of S if and only if B(x, ε1)∩S 6= ∅ and B(x, ε1)∩SC 6=
∅ for each positive real number ε1 > ε0. Let’s denote the set of all the
ε0−boundary points of S in Rm by Bdε0(S) or ∂ε0S.

Definition 2.3. Let S be a subset of Rm. A point x is called the
ε0−exterior point of S if and only if x is an ε0−interior point of SC =
Rm−S. Let’s denote the set of all the ε0−exterior points of S in Rm by
Extε0(S).

Remark 2.4. The union Rm = Intε0(S) ∪Bdε0(S) ∪ Extε0(S) is the
mutually disjoint one, So(0) = So and Intε0(S) ⊆ Int0(S) = So for all
ε0 ≥ 0.

Lemma 2.5. Let S be a subset of Rm and suppose that ε0 ≥ 0. Then
Intε0(S) and Extε0(S) are open subsets of Rm. Hence Bdε0(S) is closed
in Rm.

Proof. Let any element x ∈ Intε0(S) be given. Then there is a positive
real number ε1 > ε0 such that x ∈ B(x, ε1) ⊆ S. Consider the set
B(x, 1

3
(ε1 − ε0)). For any point y ∈ B(x, 1

3
(ε1 − ε0)), we have, for any

point z ∈ B(y, ε0 + 1
3
(ε1 − ε0)),

‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖

<
1

3
(ε1 − ε0) + ε0 +

1

3
(ε1 − ε0)

< ε0 + ε1 − ε0 = ε1.

Hence we have B(y, ε0 + 1
3
(ε1 − ε0)) ⊆ B(x, ε1) ⊆ S. Thus we have

y ∈ Intε0(S) since ε0 + 1
3
(ε1 − ε0) > ε0. Therefore, we have

x ∈ B(x,
1

3
(ε1 − ε0)) ⊆ Intε0(S).

This implies that Intε0(S) is open. And Extε0(S) is also open since it
is the ε0-interior of SC . Since Rm = Intε0(S) ∪ Bdε0(S) ∪ Extε0(S) is
the disjoint union, Bdε0(S) = Rm − {Intε0(S) ∪ Extε0(S)} is closed in
Rm.

Lemma 2.6. Let S be a subset of Rm and suppose that ε0 ≥ 0. Then
we have S

′

(ε0)
⊆ Intε0(S) ∪Bdε0(S).

Proof. Let any element x ∈ S
′

(ε0)
be given. Since Rm = Intε0(S) ∪

Bdε0(S) ∪ Extε0(S) is a disjoint union, we need only to show that x /∈
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Extε0(S). To the contrary, assume that x ∈ Extε0(S). Then there is
ε1 > ε0 such that x ∈ B(x, ε1) ⊆ SC . Hence B(x, ε1) ∩ S = ∅. This is a
contradiction since x ∈ S ′

(ε0)
.

Theorem 2.7. Let S be a subset of Rm and suppose that ε0 ≥ 0.
Then S(ε0) = Intε0(S) ∪Bdε0(S).

Proof. Since Rm = Intε0(S)∪Bdε0(S)∪Extε0(S) is the disjoint union
and S is disjoint from Extε0(S), we have S ⊆ Intε0(S)∪Bdε0(S). Hence,
by lemma 2.6, we have

S(ε0) = S ∪ S ′

(ε0)
⊆ Intε0(S) ∪Bdε0(S).

In order to prove the equality, let any element x ∈ Intε0(S) ∪ Bdε0(S)
be given. If x ∈ S then we are done. Suppose that x /∈ S. Then
x /∈ Intε0(S). Thus we have x ∈ Bdε0(S). Hence we have

∀ε1 > ε0, B(x, ε1) ∩ S 6= ∅ and B(x, ε1) ∩ SC 6= ∅.

Thus we have ∃yε1 ∈ S s.t. yε1 ∈ B(x, ε1). Since yε1 6= x, we have

∀ε1 > ε0, yε1 ∈ B(x, ε1) ∩ (S − {x}) 6= ∅.

This implies that x ∈ S ′

(ε0)
which completes the proof.

Corollary 2.8. Let S be a subset of Rm and suppose that ε0 ≥ 0.
Then

S(ε0) = [{SC}o(ε0)]
C .

Proof. Since Rm = Intε0(S)∪Bdε0(S)∪Extε0(S) is the disjoint union
and S(ε0) = Intε0(S) ∪ Bdε0(S), the union of the equation Rm = S(ε0) ∪
Extε0(S) is the disjoint one. Hence we have {S(ε0)}C = Extε0(S) =

{SC}o(ε0). Thus we have S(ε0) = [{SC}o(ε0)]
C .

Theorem 2.9. Let S be a subset of Rm and suppose that ε0 ≥ 0.

Then Rm − (Rm − S)(ε0) = Intε0(S), i.e., [SC ]
C

(ε0)
= Intε0(S).

Proof. By the definition of the ε0−closure of the set SC , we have
[SC ](ε0) = [SC ]′(ε0) ∪ S

C . Hence we have Rm − [SC ](ε0) = {[SC ]′(ε0)}
C ∩ S.

Thus we need only to show that Intε0(S) = {[SC ]′(ε0)}
C ∩ S. Let any
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element x ∈ Intε0(S) be given. Then we have

∃ε1 > ε0 s.t. x ∈ B(x, ε1) ⊆ S

⇒ B(x, ε1) ∩ SC = ∅ and x ∈ S
⇒ x /∈ [SC ]′(ε0) and x ∈ S
⇒ x ∈ {[SC ]′(ε0)}

C ∩ S.

Conversely, let any element x ∈ {[SC ]′(ε0)}
C ∩ S be given. Since x ∈ S is

not a member of [SC ]′(ε0), we have

∃ε1 > ε0 s.t. B(x, ε1) ∩ (SC − {x}) = ∅.
Since x ∈ S and SC−{x} = SC , we also have B(x, ε1)∩SC = ∅. Thus we
have x ∈ B(x, ε1) ⊆ S. Therefore, we have x ∈ Intε0(S) which completes
the proof.

Theorem 2.10. (Representation) Let S be a subset of Rm and sup-
pose that ε0 ≥ 0. Then we have

Bdε0(S) = ∪
x∈∂S

B(x, ε0).

Moreover, if ε0 > 0 then ∂S is an ε0−dense subset of the interior of the
subset Bdε0(S).

Proof. Let x ∈ ∂S and any element y ∈ B(x, ε0) be given. For each
positive real number ε > ε0, we have x ∈ B(y, ε). Hence x ∈ B(x, ε −
ε0) ⊆ B(y, ε). Since x ∈ ∂S,

B(x, ε− ε0) ∩ S 6= ∅ and B(x, ε− ε0) ∩ SC 6= ∅.
Thus we have

B(y, ε) ∩ S 6= ∅ and B(y, ε) ∩ SC 6= ∅.
Hence we have y ∈ Bdε0(S). Thus we have B(x, ε0) ⊆ Bdε0(S) for all
elements x ∈ ∂S. Therefore, we have ∪

x∈∂S
B(x, ε0) ⊆ Bdε0(S). Conversely,

let any element y ∈ Bdε0(S) be given. For each natural number n, we
have

B(y, ε0 +
1

n
) ∩ S 6= ∅ and B(y, ε0 +

1

n
) ∩ SC 6= ∅.

Hence there are two sequences {wn}, {zn} in Rm such that {wn} ⊆ S,
{zn} ⊆ SC and wn, zn ∈ B(y, ε0 + 1

n
) for each natural number n. Since

they are bounded, we may assume by using their subsequences that
lim
n→∞

wn = w0 and lim
n→∞

zn = z0 for some elements w0 ∈ S and z0 ∈ SC .
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Note that ∂S = ∂SC . If w0 ∈ ∂S or z0 ∈ ∂S then we are done since
y ∈ B(w0, ε0) with w0 ∈ ∂S or y ∈ B(z0, ε0) with z0 ∈ ∂S. Now suppose
that w0 /∈ ∂S and z0 /∈ ∂S. Then we must have w0 ∈ Int(S) and
z0 ∈ Ext(S). Now consider the line segment w0z0 joining the points w0

and z0. We have w0z0 ∩ ∂S 6= ∅ since w0z0 is connected. Choosing an
element x0 ∈ w0z0 ∩ ∂S, we have x0 = t0w0 + (1 − t0)z0 for some real
number 0 < t0 < 1. Thus we have

‖y − x0‖ = ‖t0y + (1− t0)y − {t0w0 + (1− t0)z0}‖
≤ t0‖y − w0‖+ (1− t0)‖y − z0‖
≤ t0ε0 + (1− t0)ε0 = ε0.

Hence y ∈ B(x0, ε0) ⊆ ∪
x∈∂S

B(x, ε0). Moreover, if ε0 > 0 then ∂S is a

subset of the interior of Bdε0(S). Thus ∂S is an ε0−dense subset of the
interior of the subset Bdε0(S) by the lemma 1.6.

Theorem 2.11. (Core) Let S be a subset of Rm and suppose that
ε0 ≥ 0. Then

Intε0(S) = S − ∪
x∈∂S

B(x, ε0).

Proof. By the theorem just above, we need only to show that Intε0(S)
= S −Bdε0(S). Let any element x ∈ S −Bdε0(S) be given. Then x ∈ S
and x /∈ Bdε0(S). Since Rm = Intε0(S) ∪ Bdε0(S) ∪ Extε0(S) is the
disjoint union, we must have x ∈ Intε0(S). Conversely, let any element
x ∈ Intε0(S) be given. Then we clearly have x ∈ S, x /∈ Extε0(S) and
x /∈ Bdε0(S). Thus we have x ∈ S −Bdε0(S).

Lemma 2.12. A subset F of Rm is the boundary of some open subset
in Rm if and only if F is closed and nowhere dense.

Proof. First, suppose that F is the boundary of some open subset S
in Rm. Then it is clear that F is closed. Since the interior S of the set
S is disjoint from the boundary F of S, we have S ∩ F = ∅. If some
point x ∈ F is an interior point of F then there is a positive real number
ε1 > 0 such that x ∈ B(x, ε1) ⊆ F . Since S ∩ F = ∅, this implies that
B(x, ε1) ∩ S = ∅. Thus we have x ∈ B(x, ε1) ⊆ SC . This implies that
x ∈ Ext(S). This is a contradiction since the boundary is disjoint from
the exterior. This contradiction implies that F is nowhere dense. Now
suppose that F is closed and nowhere dense. Take S = FC . Then S is
an open subset of Rm. We need only to prove that F = ∂FC . First, we
have ∂FC ∩ FC = ∅ since FC is open. Hence we have ∂FC ⊆ F . Next,
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let any element x ∈ F be given. Then B(x, ε)∩F 6=∅ for all positive real
number ε > 0 since this intersection contains the element x. Moreover,
the open ball B(x, ε) cannot be a subset of F for all positive real number
ε > 0 since F is nowhere dense. Thus we also have B(x, ε) ∩ FC 6=∅ for
all positive real number ε > 0. Hence we have x ∈ ∂FC = ∂S. Thus
F = ∂S.

Corollary 2.13. Let S be any subset of Rm. Then {∂S}o = ∅.

Proof. Let S be any subset of Rm. Since S
C

is open, ∂S
C

is nowhere

dense by the lemma just above. But we have ∂S = ∂S
C

. Hence we have

{∂S}o = {∂SC}o = ∅.
Theorem 2.14. Let F be a non-empty subset of Rm and ε0 ≥ 0.

Then F is the ε0−boundary of some open subset of Rm if and only if
F = ∪

x∈S
B(x, ε0) for some closed and nowhere dense subset S of Rm.

Proof. First, suppose that F is the ε0−boundary of some open subset
G of Rm. Then the boundary S = ∂G of G is closed and nowhere dense
subset of Rm by the lemma just above. Moreover, we have

F = Bdε0(G) = ∪
x∈∂G

B(x, ε0)

by the theorem 2.10. Hence we have F = ∪
x∈S

B(x, ε0). Conversely, sup-

pose that F = ∪
x∈S

B(x, ε0) for some closed and nowhere dense subset

S of Rm. Then S is the boundary ∂G of some open subset G of Rm

by the lemma just above. The ε0−boundary of this open subset G is
given by Bdε0(G) = ∪

x∈∂G
B(x, ε0) by the theorem 2.10. Thus F is the

ε0−boundary of the open subset G.

Lemma 2.15. Let S, T be any subsets of Rm and suppose that ε0 ≥ 0.
Then

(1) Intε0(S ∩ T ) = Intε0(S) ∩ Intε0(T ).
(2) Extε0(S ∪ T ) = Extε0(S) ∩ Extε0(T ).

Proof. (1) Since S ∩T is a subset of S and T , we have Intε0(S ∩T ) ⊆
Intε0(S)∩Intε0(T ). Conversely, if x ∈ Intε0(S)∩Intε0(T ) is any element
then we have

∃ε1 > ε0 s.t. x ∈ B(x, ε1) ⊆ S

and
∃ε2 > ε0 s.t. x ∈ B(x, ε2) ⊆ T.
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Hence we have the statement

∃ε3 = min{ε1, ε2} > ε0 s.t. x ∈ B(x, ε3) ⊆ S ∩ T
which implies that x ∈ Intε0(S ∩ T ). (2) By (1), we have

Intε0(S
C ∩ TC) = Intε0(S

C) ∩ Intε0(TC).

Since Intε0(S
C) = Extε0(S), we have the desired result Extε0(S ∪ T ) =

Extε0(S) ∩ Extε0(T ).

Note that Intε0(S) ∪ Intε0(T ) ⊆ Intε0(S ∪ T ) in general.

Theorem 2.16. Let S, T be any subsets of Rm and suppose that
ε0 ≥ 0. Then Clε0(S ∪ T ) = Clε0(S) ∪ Clε0(T ).

Proof. By the corollary 2.8 and the lemma 2.15, we have

(S ∪ T )(ε0) = [{(S ∪ T )C}o(ε0)]
C

= [{(SC ∩ TC)}o(ε0)]
C

= {(SC)o(ε0) ∩ (TC)o(ε0)}
C

= {(SC)o(ε0)}
C ∪ {(TC)o(ε0)}

C

= S(ε0) ∪ T (ε0)

which completes the proof.

3. Thickness

By the corollary 2.13, we have {∂S}o = ∅ for all subsets of Rm. But
the similar relation {∂ε0S}o(ε0) = ∅ is not true in general if ε0 6= 0. For

if S = {A,B,C} is the vertices of the equilateral triangle in R2, then
we have A+B+C

3
∈ {∂ε0S}o(ε0) with ε0 = ‖A − B‖. This leads us to the

following concept of the thickness.

Definition 3.1. Let S be a non-empty subset of Rm and ε0 ≥ 0.
Then S is said to be ε0−thick at a point p ∈ S if and only if p ∈ Intε0(S)
. In this case, we call that p is an ε0−thick point or spot of S.

Note that Intε0(S) is the set of all the ε0−thick points of S. We call

the closure Intε0(S) the ε0−core of S. In according to the theorem 2.11,
the ε0−core of S is the closure of the set Intε0(S) = S − ∪

x∈∂S
B(x, ε0).

Note also that if S is ε0−thick at a point p ∈ S then S is ε−thick at
a point p ∈ S for all 0 < ε < ε1 for some ε1 with ε0 < ε1.
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Definition 3.2. Let S be a non-empty subset of Rm and ε0 ≥ 0.
Then S is said to be not ε0−thick anywhere or nowhere ε0−thick if and
only if Intε0(S) = ∅.

Theorem 3.3. Let S be any subsets of Rm and suppose that ε0 ≥ 0.
If Bdε0(S) is nowhere ε0−thick then Bd(S) is closed and nowhere dense,
but not conversely.

Proof. The boundary Bd(S) is clearly closed in Rm. Suppose that
Bd(S) is not nowhere dense. Then Int(Bd(S)) 6= ∅. Hence there is a
point x0 ∈ Bd(S) such that B(x0, ε1) ⊆ Bd(S) for some positive real
number ε1 > 0. Then we have

x0 ∈ B(x0, ε0 +
ε1
2

) ⊆ ∪
x∈Bd(S)

B(x, ε0) = Bdε0(S).

Thus we have x0 ∈ Intε0(Bdε0(S)). Hence Bdε0(S) is ε0−thick at x0. In
order to show that the converse is not true in general, choose the open
set S = B(0, ε0) with ε0 > 0. Then we have Bd(S) = {x ∈ Rm|‖x−0‖ =
ε0} = S(0, ε0). The sphere S(0, ε0) is closed and nowhere dense. But we
have

0 ∈ B(0,
3

2
ε0) ⊆ ∪

x∈Bd(S)
B(x, ε0) = Bdε0(S).

Hence Bdε0(S) is ε0−thick at the origin 0.

Let u be any non-zero vector in Rm. Let’s denote the orthogonal space
by u⊥ = {z ∈ Rm : z · u = 0}. Recall that the projection of a vector
x ∈ Rm along the vector u is given by proju(x) = u·x

u·uu. Let’s denote the

parallel projection from Rm to u⊥ by Π(u⊥)(x) = x− proju(x).

Theorem 3.4. Let S be any subsets of Rm and suppose that ε0 ≥ 0.
If S is ε0−thick at a point p ∈ S in Rm then for any non-zero vector
u ∈ Rm the set Π(u⊥)(S) = {Π(u⊥)(x) : x ∈ S} is ε0−thick at the point
Π(u⊥)(p) in the m− 1 dimensional space Π(u⊥)(R

m), but not conversely.

Proof. Suppose that S is ε0−thick at a point p ∈ S in Rm and let
u be any non-zero vector in Rm. Then there is a positive real number
ε1 > ε0 such that p ∈ B(p, ε1) ⊆ S. Hence we have

Π(u⊥)(p) ∈ Π(u⊥)(B(p, ε1)) ⊆ Π(u⊥)(S).

This completes the proof of the first part since Π(u⊥)(B(p, ε1)) is an open
ball in Π(u⊥)(R

m) with the same radius ε1. Now let {A,B,C} be the
vertices of the equilateral triangle in R2 with ‖A−B‖ = 2ε0. Then the
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set S = B(A, ε0)∪B(B, ε0)∪B(C, ε0) is not ε0−thick at any point. But
the set Π(u⊥)(S) is obviously ε0−thick at some point for any direction u
in Rm.

Lemma 3.5. Let ε0 > 0 be given. If P,Q ∈ R2 are distinct points
with ‖P − Q‖ < 2ε0, then there are two points U, V ∈ R2 such that
‖U − P‖ = ‖U −Q‖ = ε0 = ‖V − P‖ = ‖V −Q‖.

Proof. We clearly have S(P, ε0) ∩ S(Q, ε0) = {U, V }.

Remark 3.6. It is obvious that Intε0
[
B(P, ε0) ∪B(Q, ε0)

]
= ∅ for

any two points P,Q in R2.

Theorem 3.7. Let P,Q, U, V ∈ R2 be the four points in the above
lemma with P on the left, Q on the right, U at the top and V at the
bottom. If a point T ∈ R2 is an element of the intersection B(U, ε0) ∩
B(V, ε0) then we have

Intε0
[
B(P, ε0) ∪B(Q, ε0) ∪B(T, ε0)

]
= ∅.

Proof. Put Z = B(P, ε0) ∪ B(Q, ε0) ∪ B(T, ε0). If T is a bound-
ary point of the intersection B(U, ε0) ∩ B(V, ε0) then the three spheres
S(T, ε0), S(P, ε0) and S(Q, ε0) meet at the point U or V . Suppose that
they meet at the point V . Then for any point x ∈ B(V, ε0) we have
‖x − V ‖ ≤ ε0. Since V is a boundary point of the union Z, this
implies that any point x in the set B(V, ε0) ∩ Z is not an ε0−interior
point of Z. Since the sphere S(V, ε0) passes through the center points
P,Q, T of the three spheres S(P, ε0), S(Q, ε0) and S(T, ε0), we also have
dist(x, ∂(Z−B(V, ε0))) ≤ ε0 for all the points x ∈ Z−B(V, ε0). Thus we
have Intε0(Z) = ∅. The proof of the case where they meet at the point
U is similarly handled. On the other hand, suppose that the point T is
in the interior of the intersection B(U, ε0) ∩ B(V, ε0). Then the center
points U, V are in the open ball B(T, ε0) and the sphere S(T, ε0) meets
the boundary of the union B(P, ε0) ∪ B(Q, ε0) at the four points, say
A,B,C and D. Let’s call the point on the upper left A, the point on
the lower left B, the point on the upper right C and the point on the
lower right D. Then, for any point x of the union of the rhombi ♦APBT
and ♦CTDQ, we have dist(x, ∂(Z)) ≤ ε0 since the points A,B,C and
D are in the boundary of Z. And, for any point x in the union of
the four circular sectors 	 APB, 	 ATC, 	 BTD and 	 CQD, we
also have dist(x, ∂(Z)) ≤ ε0 since all of the circular arcs of these four
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circular sectors are parts of the boundary of Z. Therefore, we have
dist(x, ∂(Z)) ≤ ε0 for all the points x ∈ Z. Consequently, we have
Intε0(Z) = ∅.

Corollary 3.8. Let P1, P2, P3 be three points in R2. Suppose that

Intε0
[
B(P1, ε0) ∪B(P2, ε0) ∪B(P3, ε0)

]
6= ∅.

Then we have

(1) S(P1, ε0) ∩ S(P2, ε0) = {U1, V2} and P3 /∈ B(U1, ε0) ∩B(V2, ε0)

(2) S(P2, ε0) ∩ S(P3, ε0) = {U2, V3} and P1 /∈ B(U2, ε0) ∩B(V3, ε0)

(3) S(P3, ε0) ∩ S(P1, ε0) = {U3, V1} and P2 /∈ B(U3, ε0) ∩B(V1, ε0).

Proof. (1) From the theorem just above, if S(P1, ε0) ∩ S(P2, ε0) =
{U1, V2} and P3 ∈ B(U1, ε0) ∩B(V2, ε0) then

Intε0
[
B(P1, ε0) ∪B(P2, ε0) ∪B(P3, ε0)

]
= ∅.

The proofs of (2) and (3) are quite similar to the proof of (1) and we
omit them.

Theorem 3.9. Let P,Q, U, V be the four mutually distinct points in
R2 such that S(P, ε0) ∩ S(Q, ε0) = {U, V } with P on the left, Q on the
right, U at the top and V at the bottom. If a point T ∈ R2 is an element
of the union [

B(U, ε0)−B(V, ε0)
]
∪
[
B(V, ε0)−B(U, ε0)

]
then Z = B(P, ε0) ∪B(Q, ε0) ∪B(T, ε0) is ε0−thick at some point.

Proof. We need only to prove the case where T ∈
[
B(U, ε0)−B(V, ε0)

]
since the another case is similarly handled. Then we have U ∈ B(T, ε0)
and V /∈ B(T, ε0). And the sphere S(T, ε0) meets the boundary of the set
B(P, ε0)∪B(Q, ε0) at two points, say L on the left, R on the right. Con-
sider the triangle 4LV R. Let’s denote by V ′ the point at which the line
segment connecting the midpoint L+R

2
and the vertex V intersects the

sphere S(T, ε0). Now if ∠LV ′R ≤ π
2

then the radius of the circumscribed
circle of the triangles4LV ′R is ε0 and 0 < ∠LV R < ∠LV ′R ≤ π

2
. Hence

if r is the radius of the circumscribed circle of the triangle 4LV R then
we have

2ε0 =
LR

sin(∠LV ′R)
<

LR

sin(∠LV R)
= 2r, i.e., ε0 < r.
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On the other hand, if ∠LV ′R > π
2

then the point T is positioned higher

than the line segment LR. In this case, let C be the image of the
reflection of the circle S(T, ε0) with respect to the line segment LR.
Let’s denote by V ′′ the point at which the line segment connecting the
midpoint L+R

2
and the vertex V intersects this circle C. Then the point

V ′′ lies inside the triangle 4LV R and we have ∠LV ′′R ≤ π
2
. Hence the

radius r of the circumscribed circle of the triangle 4LV R still satisfies
the relation ε0 < r since the radius of the circumscribed circle of the
triangles 4LV ′′R is ε0 and 0 < ∠LV R < ∠LV ′′R ≤ π

2
. Since the three

sides LV , RV and LR of the triangle4LV R are parts of the closed balls
B(P, ε0), B(Q, ε0) and B(T, ε0), respectively, the circumscribed circle
and its interior of the triangle 4LV R is a subset of the union Z. Thus
Z contains an open ball with radius ε0+r

2
which implies that Intε0(Z) 6=

∅.

Theorem 3.10. (Three points thickness) Let P,Q be the two distinct
points in R2 with ‖P −Q‖ < 2ε0 such that S(P, ε0)∩ S(Q, ε0) = {U, V }
with P on the left, Q on the right, U at the top and V at the bottom.
For a point T ∈ R2, the union Z = B(P, ε0) ∪ B(Q, ε0) ∪ B(T, ε0) is
ε0−thick at some point of Z if and only if

T ∈
{
B(U, ε0)−B(V, ε0)

}
∪
{
B(V, ε0)−B(U, ε0)

}
.

Proof. By means of the theorems 3.7 and 3.9, we need only to prove
that if T /∈ B(U, ε0) ∪ B(V, ε0) then Z is nowhere ε0−thick. Suppose
that T /∈ B(U, ε0) ∪B(V, ε0). Then we have U, V /∈ B(T, ε0). Now there
are three cases depending on the relative position of the two points U, V
with respect to the sphere S(T, ε0).

Case I. U, V /∈ S(T, ε0). In this case, the intersection of the sphere
S(T, ε0) and the boundary of the union B(P, ε0) ∪ B(Q, ε0) is a subset
A of R2 consisting of no point, one point, two points, three points or
four points. But all the points of the union A∪{U, V } are the boundary
point of the union Z. Hence we have Intε0(Z) = ∅.

Case II. U or V ∈ S(T, ε0) and S(T, ε0) ∩ ∂
[
B(P, ε0) ∪B(Q, ε0)

]
is

consisting of the two elements. In this case, we may assume that this
intersection contains the point V since the case where it contains U is
similarly handled. Then we have ‖x−V ‖ ≤ 2ε0 for all the points x ∈ Z.
Since V is a boundary point of Z, this implies that Intε0(Z) = ∅.

Case III. U or V ∈ S(T, ε0) and S(T, ε0) ∩ ∂
[
B(P, ε0) ∪B(Q, ε0)

]
is

consisting of the three elements. In this case, we may also assume that
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the set of the last intersection is {E, V, F} with E ∈ S(T, ε0)∩ S(P, ε0).
Since the quadrilaterals �PETV and �QV TF are the rhombi, we have
PQ = EF . Similarly, we have EU = TQ and PT = UF by using
the appropriate rhombi. Thus the triangles 4UEF and 4PQT are
congruent. Since PV = TV = QV = ε0, the point V is the circumcenter
of the triangle 4PQT . Hence the radius of the circumscribed circle of
4UEF is ε0. Since all the three points U,E, F are the boundary points
of Z, this implies that Intε0(Z) = ∅.
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