ON THE GENERALIZED BOUNDARY AND THICKNESS

Buhyeon Kang

Abstract

We introduced the concepts of the generalized accumulation points and the generalized density of a subset of the Euclidean space in [1] and [2]. Using those concepts, we introduce the concepts of the generalized closure, the generalized interior, the generalized exterior and the generalized boundary of a subset and investigate some properties of these sets. The generalized boundary of a subset is closely related to the classical boundary. Finally, we also introduce and study a concept of the thickness of a subset.

1. Introduction

In this section, we introduce a concept of the generalized closure of a set and study some properties of the generalized dense subset which we need later. Throughout this paper, $\epsilon_{0} \geq 0$ denotes any, but fixed, non-negative real number. We denote the open ball, the closed ball and the sphere with radius ϵ and center at α in the space R^{m} by $B(\alpha, \epsilon)=$ $\left\{x \in R^{m}:\|x-\alpha\|<\epsilon\right\}, \bar{B}(\alpha, \epsilon)=\left\{x \in R^{m}:\|x-\alpha\| \leq \epsilon\right\}$ and $S(\alpha, \epsilon)=\left\{x \in R^{m}:\|x-\alpha\|=\epsilon\right\}$, respectively.

Definition 1.1. Let S be a subset of R^{m}. A point $a \in R^{m}$ is an ϵ_{0}-accumulation point of the subset S if and only if $B(a, \epsilon) \cap(S-\{a\}) \neq$ \emptyset for all $\epsilon>\epsilon_{0}$. And a point $a \in S$ is an ϵ_{0}-isolated point of S if and only if $B\left(a, \epsilon_{1}\right) \cap(S-\{a\})=\emptyset$ for some positive number $\epsilon_{1}>\epsilon_{0}$.

Received July 17, 2020. Revised September 11, 2020. Accepted September 11, 2020.

2010 Mathematics Subject Classification: 03H05, 26E35.
Key words and phrases: ϵ_{0}-interior, ϵ_{0}-exterior, ϵ_{0}-boundary, ϵ_{0}-thick.
(c) The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Definition 1.2. For a subset S of R^{m}, we define the $\epsilon_{0}-$ derived set of S as the set of all the ϵ_{0}-accumulation points of S and denote it by $S_{\left(\epsilon_{0}\right)}^{\prime}$.

Definition 1.3. Let S be a subset of R^{m}. The ϵ_{0}-closure of S is defined by $\bar{S}_{\left(\epsilon_{0}\right)}=C l_{\epsilon_{0}}(S)=S_{\left(\epsilon_{0}\right)}^{\prime} \cup S$.

Definition 1.4. Let E be any non-empty and open subset of R^{m} and $\epsilon_{0} \geq 0$. And let a subset D of E be given. We define that D is an ϵ_{0}-dense subset of E in E if and only if $E \subseteq \bar{D}_{\left(\epsilon_{0}\right)}$. In this case, we say that D is ϵ_{0}-dense in E.

Definition 1.5. Let E be an open non-empty subset of R^{m}. And let D be an ϵ_{0}-dense subset of E in E. An element $a \in D$ is called a point of the ϵ_{0}-dense ace of D in E if and only if $D-\{a\}$ is not $\epsilon_{0}-$ dense in E.

Lemma 1.6. Let E be an open subset of R^{m} and D be a non-empty subset of E. Suppose that $E \subseteq \underset{b \in D}{\cup} \bar{B}\left(b, \epsilon_{0}\right)$. Then D is $\epsilon_{0}-$ dense in E.

Proof. See the proof of the lemma 2.10 in [1].
Lemma 1.7. Let D be a non-empty subset of an open subset E of R^{m} and $\bar{D}=D_{(0)}^{\prime} \cup D$. Then D is $\epsilon_{0}-$ dense in E if and only if $E \subseteq$ $\underset{b \in \bar{D}}{\cup} \bar{B}\left(b, \epsilon_{0}\right)$.

Proof. See the proof of the theorem 2.11 in [1].

2. The generalized interior and boundary

In this section, we investigate about the concepts of the ϵ_{0}-interior, the ϵ_{0}-exterior and the ϵ_{0}-bouundary of subsets in R^{m} and research the shapes of these sets. Throughout this section, $\epsilon_{0} \geq 0$ denotes any, but fixed, non-negative real number unless otherwise stated.

Definition 2.1. Let S be a subset of R^{m}. A point x is called the ϵ_{0}-interior point of S if and only if there is a positive real number $\epsilon_{1}>\epsilon_{0}$ such that $x \in B\left(x, \epsilon_{1}\right) \subseteq S$. Let's denote the set of all the ϵ_{0}-interior points of S in R^{m} by $\operatorname{Int}_{\epsilon_{0}}(S)$ or $S_{\left(\epsilon_{0}\right)}^{o}$.

Definition 2.2. Let S be a subset of R^{m}. A point x is called the ϵ_{0}-boundary point of S if and only if $B\left(x, \epsilon_{1}\right) \cap S \neq \emptyset$ and $B\left(x, \epsilon_{1}\right) \cap S^{C} \neq$ \emptyset for each positive real number $\epsilon_{1}>\epsilon_{0}$. Let's denote the set of all the ϵ_{0}-boundary points of S in R^{m} by $B d_{\epsilon_{0}}(S)$ or $\partial_{\epsilon_{0}} S$.

Definition 2.3. Let S be a subset of R^{m}. A point x is called the ϵ_{0}-exterior point of S if and only if x is an ϵ_{0}-interior point of $S^{C}=$ $R^{m}-S$. Let's denote the set of all the $\epsilon_{0}-$ exterior points of S in R^{m} by $E x t_{\epsilon_{0}}(S)$.

Remark 2.4. The union $R^{m}=\operatorname{Int}_{\epsilon_{0}}(S) \cup B d_{\epsilon_{0}}(S) \cup \operatorname{Ext}_{\epsilon_{0}}(S)$ is the mutually disjoint one, $S_{(0)}^{o}=S^{o}$ and $\operatorname{Int}_{\epsilon_{0}}(S) \subseteq \operatorname{Int} t_{0}(S)=S^{o}$ for all $\epsilon_{0} \geq 0$.

Lemma 2.5. Let S be a subset of R^{m} and suppose that $\epsilon_{0} \geq 0$. Then $\operatorname{Int}_{\epsilon_{0}}(S)$ and $E x t_{\epsilon_{0}}(S)$ are open subsets of R^{m}. Hence $B d_{\epsilon_{0}}(S)$ is closed in R^{m}.

Proof. Let any element $x \in \operatorname{Int}_{\epsilon_{0}}(S)$ be given. Then there is a positive real number $\epsilon_{1}>\epsilon_{0}$ such that $x \in B\left(x, \epsilon_{1}\right) \subseteq S$. Consider the set $B\left(x, \frac{1}{3}\left(\epsilon_{1}-\epsilon_{0}\right)\right)$. For any point $y \in B\left(x, \frac{1}{3}\left(\epsilon_{1}-\epsilon_{0}\right)\right)$, we have, for any point $z \in B\left(y, \epsilon_{0}+\frac{1}{3}\left(\epsilon_{1}-\epsilon_{0}\right)\right)$,

$$
\begin{aligned}
\|x-z\| & \leq\|x-y\|+\|y-z\| \\
& <\frac{1}{3}\left(\epsilon_{1}-\epsilon_{0}\right)+\epsilon_{0}+\frac{1}{3}\left(\epsilon_{1}-\epsilon_{0}\right) \\
& <\epsilon_{0}+\epsilon_{1}-\epsilon_{0}=\epsilon_{1} .
\end{aligned}
$$

Hence we have $B\left(y, \epsilon_{0}+\frac{1}{3}\left(\epsilon_{1}-\epsilon_{0}\right)\right) \subseteq B\left(x, \epsilon_{1}\right) \subseteq S$. Thus we have $y \in \operatorname{Int}_{\epsilon_{0}}(S)$ since $\epsilon_{0}+\frac{1}{3}\left(\epsilon_{1}-\epsilon_{0}\right)>\epsilon_{0}$. Therefore, we have

$$
x \in B\left(x, \frac{1}{3}\left(\epsilon_{1}-\epsilon_{0}\right)\right) \subseteq \operatorname{Int}_{\epsilon_{0}}(S)
$$

This implies that $\operatorname{Int}_{\epsilon_{0}}(S)$ is open. And $E x t_{\epsilon_{0}}(S)$ is also open since it is the ϵ_{0}-interior of S^{C}. Since $R^{m}=\operatorname{Int}_{\epsilon_{0}}(S) \cup B d_{\epsilon_{0}}(S) \cup E x t_{\epsilon_{0}}(S)$ is the disjoint union, $B d_{\epsilon_{0}}(S)=R^{m}-\left\{\operatorname{Int}_{\epsilon_{0}}(S) \cup \operatorname{Ext}_{\epsilon_{0}}(S)\right\}$ is closed in R^{m}.

Lemma 2.6. Let S be a subset of R^{m} and suppose that $\epsilon_{0} \geq 0$. Then we have $S_{\left(\epsilon_{0}\right)}^{\prime} \subseteq I n t_{\epsilon_{0}}(S) \cup B d_{\epsilon_{0}}(S)$.

Proof. Let any element $x \in S_{\left(\epsilon_{0}\right)}^{\prime}$ be given. Since $R^{m}=\operatorname{Int}_{\epsilon_{0}}(S) \cup$ $B d_{\epsilon_{0}}(S) \cup E x t_{\epsilon_{0}}(S)$ is a disjoint union, we need only to show that $x \notin$
$\operatorname{Ext}_{\epsilon_{0}}(S)$. To the contrary, assume that $x \in \operatorname{Ext}_{\epsilon_{0}}(S)$. Then there is $\epsilon_{1}>\epsilon_{0}$ such that $x \in B\left(x, \epsilon_{1}\right) \subseteq S^{C}$. Hence $B\left(x, \epsilon_{1}\right) \cap S=\emptyset$. This is a contradiction since $x \in S_{\left(\epsilon_{0}\right)}^{\prime}$.

Theorem 2.7. Let S be a subset of R^{m} and suppose that $\epsilon_{0} \geq 0$. Then $\bar{S}_{\left(\epsilon_{0}\right)}=$ Int $_{\epsilon_{0}}(S) \cup B d_{\epsilon_{0}}(S)$.

Proof. Since $R^{m}=\operatorname{Int}_{\epsilon_{0}}(S) \cup B d_{\epsilon_{0}}(S) \cup E x t_{\epsilon_{0}}(S)$ is the disjoint union and S is disjoint from $E x t_{\epsilon_{0}}(S)$, we have $S \subseteq \operatorname{Int}_{\epsilon_{0}}(S) \cup B d_{\epsilon_{0}}(S)$. Hence, by lemma 2.6 , we have

$$
\bar{S}_{\left(\epsilon_{0}\right)}=S \cup S_{\left(\epsilon_{0}\right)}^{\prime} \subseteq \operatorname{Int}_{\epsilon_{0}}(S) \cup B d_{\epsilon_{0}}(S)
$$

In order to prove the equality, let any element $x \in \operatorname{Int}_{\epsilon_{0}}(S) \cup B d_{\epsilon_{0}}(S)$ be given. If $x \in S$ then we are done. Suppose that $x \notin S$. Then $x \notin \operatorname{Int}_{\epsilon_{0}}(S)$. Thus we have $x \in B d_{\epsilon_{0}}(S)$. Hence we have

$$
\forall \epsilon_{1}>\epsilon_{0}, B\left(x, \epsilon_{1}\right) \cap S \neq \emptyset \text { and } B\left(x, \epsilon_{1}\right) \cap S^{C} \neq \emptyset .
$$

Thus we have $\exists y_{\epsilon_{1}} \in S$ s.t. $y_{\epsilon_{1}} \in B\left(x, \epsilon_{1}\right)$. Since $y_{\epsilon_{1}} \neq x$, we have

$$
\forall \epsilon_{1}>\epsilon_{0}, y_{\epsilon_{1}} \in B\left(x, \epsilon_{1}\right) \cap(S-\{x\}) \neq \emptyset .
$$

This implies that $x \in S_{\left(\epsilon_{0}\right)}^{\prime}$ which completes the proof.
Corollary 2.8. Let S be a subset of R^{m} and suppose that $\epsilon_{0} \geq 0$. Then

$$
\bar{S}_{\left(\epsilon_{0}\right)}=\left[\left\{S^{C}\right\}_{\left(\epsilon_{0}\right)}^{o}\right]^{C} .
$$

Proof. Since $R^{m}=\operatorname{Int}_{\epsilon_{0}}(S) \cup B d_{\epsilon_{0}}(S) \cup E x t_{\epsilon_{0}}(S)$ is the disjoint union and $\bar{S}_{\left(\epsilon_{0}\right)}=\operatorname{Int} \epsilon_{\epsilon_{0}}(S) \cup B d_{\epsilon_{0}}(S)$, the union of the equation $R^{m}=\bar{S}_{\left(\epsilon_{0}\right)} \cup$ $\operatorname{Ext}_{\epsilon_{0}}(S)$ is the disjoint one. Hence we have $\left\{\bar{S}_{\left(\epsilon_{0}\right)}\right\}^{C}=\operatorname{Ext}_{\epsilon_{0}}(S)=$ $\left\{S^{C}\right\}_{\left(\epsilon_{0}\right)}^{o}$. Thus we have $\bar{S}_{\left(\epsilon_{0}\right)}=\left[\left\{S^{C}\right\}_{\left(\epsilon_{0}\right)}^{o}\right]^{C}$.

Theorem 2.9. Let S be a subset of R^{m} and suppose that $\epsilon_{0} \geq 0$. Then $R^{m}-{\overline{\left(R^{m}-S\right)}}_{\left(\epsilon_{0}\right)}=\operatorname{Int}_{\epsilon_{0}}(S)$, i.e., ${\overline{\left[S^{C}\right]}}_{\left(\epsilon_{0}\right)}^{C}=\operatorname{Int}_{\epsilon_{0}}(S)$.

Proof. By the definition of the ϵ_{0}-closure of the set S^{C}, we have
 Thus we need only to show that $\operatorname{Int}_{\epsilon_{0}}(S)=\left\{\left[S^{C}\right]_{\left(\epsilon_{0}\right)}^{\prime}\right\}^{C} \cap S$. Let any
element $x \in \operatorname{Int}_{\epsilon_{0}}(S)$ be given. Then we have

$$
\begin{aligned}
& \exists \epsilon_{1}>\epsilon_{0} \text { s.t. } x \in B\left(x, \epsilon_{1}\right) \subseteq S \\
\Rightarrow & B\left(x, \epsilon_{1}\right) \cap S^{C}=\emptyset \text { and } x \in S \\
\Rightarrow & x \notin\left[S^{C}\right]_{\left(\epsilon_{0}\right)}^{\prime} \text { and } x \in S \\
\Rightarrow & x \in\left\{\left[S^{C}\right]_{\left(\epsilon_{0}\right)}^{\prime}\right\}^{C} \cap S .
\end{aligned}
$$

Conversely, let any element $x \in\left\{\left[S^{C}\right]_{\left(\epsilon_{0}\right)}^{\prime}\right\}^{C} \cap S$ be given. Since $x \in S$ is not a member of $\left[S^{C}\right]_{\left(\epsilon_{0}\right)}^{\prime}$, we have

$$
\exists \epsilon_{1}>\epsilon_{0} \text { s.t. } B\left(x, \epsilon_{1}\right) \cap\left(S^{C}-\{x\}\right)=\emptyset .
$$

Since $x \in S$ and $S^{C}-\{x\}=S^{C}$, we also have $B\left(x, \epsilon_{1}\right) \cap S^{C}=\emptyset$. Thus we have $x \in B\left(x, \epsilon_{1}\right) \subseteq S$. Therefore, we have $x \in \operatorname{Int}_{\epsilon_{0}}(S)$ which completes the proof.

Theorem 2.10. (Representation) Let S be a subset of R^{m} and suppose that $\epsilon_{0} \geq 0$. Then we have

$$
B d_{\epsilon_{0}}(S)=\underset{x \in \partial S}{\cup} \bar{B}\left(x, \epsilon_{0}\right) .
$$

Moreover, if $\epsilon_{0}>0$ then ∂S is an ϵ_{0}-dense subset of the interior of the subset $B d_{\epsilon_{0}}(S)$.

Proof. Let $x \in \partial S$ and any element $y \in \bar{B}\left(x, \epsilon_{0}\right)$ be given. For each positive real number $\epsilon>\epsilon_{0}$, we have $x \in B(y, \epsilon)$. Hence $x \in B(x, \epsilon-$ $\left.\epsilon_{0}\right) \subseteq B(y, \epsilon)$. Since $x \in \partial S$,

$$
B\left(x, \epsilon-\epsilon_{0}\right) \cap S \neq \emptyset \text { and } B\left(x, \epsilon-\epsilon_{0}\right) \cap S^{C} \neq \emptyset .
$$

Thus we have

$$
B(y, \epsilon) \cap S \neq \emptyset \text { and } B(y, \epsilon) \cap S^{C} \neq \emptyset .
$$

Hence we have $y \in B d_{\epsilon_{0}}(S)$. Thus we have $\bar{B}\left(x, \epsilon_{0}\right) \subseteq B d_{\epsilon_{0}}(S)$ for all elements $x \in \partial S$. Therefore, we have $\cup_{x \in \partial S} \bar{B}\left(x, \epsilon_{0}\right) \subseteq B d_{\epsilon_{0}}(S)$. Conversely, let any element $y \in B d_{\epsilon_{0}}(S)$ be given. For each natural number n, we have

$$
B\left(y, \epsilon_{0}+\frac{1}{n}\right) \cap S \neq \emptyset \text { and } B\left(y, \epsilon_{0}+\frac{1}{n}\right) \cap S^{C} \neq \emptyset .
$$

Hence there are two sequences $\left\{w_{n}\right\},\left\{z_{n}\right\}$ in R^{m} such that $\left\{w_{n}\right\} \subseteq S$, $\left\{z_{n}\right\} \subseteq S^{C}$ and $w_{n}, z_{n} \in B\left(y, \epsilon_{0}+\frac{1}{n}\right)$ for each natural number n. Since they are bounded, we may assume by using their subsequences that $\lim _{n \rightarrow \infty} w_{n}=w_{0}$ and $\lim _{n \rightarrow \infty} z_{n}=z_{0}$ for some elements $w_{0} \in \bar{S}$ and $z_{0} \in \overline{S^{C}}$.

Note that $\partial S=\partial S^{C}$. If $w_{0} \in \partial S$ or $z_{0} \in \partial S$ then we are done since $y \in \bar{B}\left(w_{0}, \epsilon_{0}\right)$ with $w_{0} \in \partial S$ or $y \in \bar{B}\left(z_{0}, \epsilon_{0}\right)$ with $z_{0} \in \partial S$. Now suppose that $w_{0} \notin \partial S$ and $z_{0} \notin \partial S$. Then we must have $w_{0} \in \operatorname{Int}(S)$ and $z_{0} \in \operatorname{Ext}(S)$. Now consider the line segment $\overline{w_{0} z_{0}}$ joining the points w_{0} and z_{0}. We have $\overline{w_{0} z_{0}} \cap \partial S \neq \emptyset$ since $\overline{w_{0} z_{0}}$ is connected. Choosing an element $x_{0} \in \overline{w_{0} z_{0}} \cap \partial S$, we have $x_{0}=t_{0} w_{0}+\left(1-t_{0}\right) z_{0}$ for some real number $0<t_{0}<1$. Thus we have

$$
\begin{aligned}
\left\|y-x_{0}\right\| & =\left\|t_{0} y+\left(1-t_{0}\right) y-\left\{t_{0} w_{0}+\left(1-t_{0}\right) z_{0}\right\}\right\| \\
& \leq t_{0}\left\|y-w_{0}\right\|+\left(1-t_{0}\right)\left\|y-z_{0}\right\| \\
& \leq t_{0} \epsilon_{0}+\left(1-t_{0}\right) \epsilon_{0}=\epsilon_{0} .
\end{aligned}
$$

Hence $y \in \bar{B}\left(x_{0}, \epsilon_{0}\right) \subseteq \bigcup_{x \in \partial S} \bar{B}\left(x, \epsilon_{0}\right)$. Moreover, if $\epsilon_{0}>0$ then ∂S is a subset of the interior of $B d_{\epsilon_{0}}(S)$. Thus ∂S is an ϵ_{0}-dense subset of the interior of the subset $B d_{\epsilon_{0}}(S)$ by the lemma 1.6.

Theorem 2.11. (Core) Let S be a subset of R^{m} and suppose that $\epsilon_{0} \geq 0$. Then

$$
\operatorname{Int}_{\epsilon_{0}}(S)=S-\underset{x \in \partial S}{\bigcup} \bar{B}\left(x, \epsilon_{0}\right)
$$

Proof. By the theorem just above, we need only to show that $\operatorname{Int}_{\epsilon_{0}}(S)$ $=S-B d_{\epsilon_{0}}(S)$. Let any element $x \in S-B d_{\epsilon_{0}}(S)$ be given. Then $x \in S$ and $x \notin B d_{\epsilon_{0}}(S)$. Since $R^{m}=\operatorname{Int}_{\epsilon_{0}}(S) \cup B d_{\epsilon_{0}}(S) \cup \operatorname{Ext}_{\epsilon_{0}}(S)$ is the disjoint union, we must have $x \in \operatorname{Int}_{\epsilon_{0}}(S)$. Conversely, let any element $x \in \operatorname{Int}_{\epsilon_{0}}(S)$ be given. Then we clearly have $x \in S, x \notin E x t_{\epsilon_{0}}(S)$ and $x \notin B d_{\epsilon_{0}}(S)$. Thus we have $x \in S-B d_{\epsilon_{0}}(S)$.

Lemma 2.12. A subset F of R^{m} is the boundary of some open subset in R^{m} if and only if F is closed and nowhere dense.

Proof. First, suppose that F is the boundary of some open subset S in R^{m}. Then it is clear that F is closed. Since the interior S of the set S is disjoint from the boundary F of S, we have $S \cap F=\emptyset$. If some point $x \in F$ is an interior point of F then there is a positive real number $\epsilon_{1}>0$ such that $x \in B\left(x, \epsilon_{1}\right) \subseteq F$. Since $S \cap F=\emptyset$, this implies that $B\left(x, \epsilon_{1}\right) \cap S=\emptyset$. Thus we have $x \in B\left(x, \epsilon_{1}\right) \subseteq S^{C}$. This implies that $x \in \operatorname{Ext}(S)$. This is a contradiction since the boundary is disjoint from the exterior. This contradiction implies that F is nowhere dense. Now suppose that F is closed and nowhere dense. Take $S=F^{C}$. Then S is an open subset of R^{m}. We need only to prove that $F=\partial F^{C}$. First, we have $\partial F^{C} \cap F^{C}=\emptyset$ since F^{C} is open. Hence we have $\partial F^{C} \subseteq F$. Next,
let any element $x \in F$ be given. Then $B(x, \epsilon) \cap F \neq \emptyset$ for all positive real number $\epsilon>0$ since this intersection contains the element x. Moreover, the open ball $B(x, \epsilon)$ cannot be a subset of F for all positive real number $\epsilon>0$ since F is nowhere dense. Thus we also have $B(x, \epsilon) \cap F^{C} \neq \emptyset$ for all positive real number $\epsilon>0$. Hence we have $x \in \partial F^{C}=\partial S$. Thus $F=\partial S$.

Corollary 2.13. Let S be any subset of R^{m}. Then $\{\partial \bar{S}\}^{\circ}=\emptyset$.
Proof. Let S be any subset of R^{m}. Since \bar{S}^{C} is open, $\partial \bar{S}^{C}$ is nowhere dense by the lemma just above. But we have $\partial \bar{S}=\partial \bar{S}^{C}$. Hence we have $\{\partial \bar{S}\}^{\circ}=\left\{\partial \bar{S}^{C}\right\}^{\circ}=\emptyset$.

Theorem 2.14. Let F be a non-empty subset of R^{m} and $\epsilon_{0} \geq 0$. Then F is the ϵ_{0}-boundary of some open subset of R^{m} if and only if $F=\cup_{x \in S} \bar{B}\left(x, \epsilon_{0}\right)$ for some closed and nowhere dense subset S of R^{m}.

Proof. First, suppose that F is the ϵ_{0}-boundary of some open subset G of R^{m}. Then the boundary $S=\partial G$ of G is closed and nowhere dense subset of R^{m} by the lemma just above. Moreover, we have

$$
F=B d_{\epsilon_{0}}(G)=\underset{x \in \partial G}{\cup} \bar{B}\left(x, \epsilon_{0}\right)
$$

by the theorem 2.10. Hence we have $F=\underset{x \in S}{\cup} \bar{B}\left(x, \epsilon_{0}\right)$. Conversely, suppose that $F=\underset{x \in S}{\cup} \bar{B}\left(x, \epsilon_{0}\right)$ for some closed and nowhere dense subset S of R^{m}. Then S is the boundary ∂G of some open subset G of R^{m} by the lemma just above. The ϵ_{0}-boundary of this open subset G is given by $B d_{\epsilon_{0}}(G)=\underset{x \in \partial G}{\cup} \bar{B}\left(x, \epsilon_{0}\right)$ by the theorem 2.10. Thus F is the ϵ_{0}-boundary of the open subset G.

Lemma 2.15. Let S, T be any subsets of R^{m} and suppose that $\epsilon_{0} \geq 0$. Then
(1) $\operatorname{Int}_{\epsilon_{0}}(S \cap T)=\operatorname{Int}_{\epsilon_{0}}(S) \cap \operatorname{Int}_{\epsilon_{0}}(T)$.
(2) $E x t_{\epsilon_{0}}(S \cup T)=E x t_{\epsilon_{0}}(S) \cap E x t_{\epsilon_{0}}(T)$.

Proof. (1) Since $S \cap T$ is a subset of S and T, we have $\operatorname{Int}_{\epsilon_{0}}(S \cap T) \subseteq$ $I n t_{\epsilon_{0}}(S) \cap I n t_{\epsilon_{0}}(T)$. Conversely, if $x \in \operatorname{Int}_{\epsilon_{0}}(S) \cap \operatorname{Int} \epsilon_{\epsilon_{0}}(T)$ is any element then we have

$$
\exists \epsilon_{1}>\epsilon_{0} \text { s.t. } \quad x \in B\left(x, \epsilon_{1}\right) \subseteq S
$$

and

$$
\exists \epsilon_{2}>\epsilon_{0} \text { s.t. } \quad x \in B\left(x, \epsilon_{2}\right) \subseteq T .
$$

Hence we have the statement

$$
\exists \epsilon_{3}=\min \left\{\epsilon_{1}, \epsilon_{2}\right\}>\epsilon_{0} \text { s.t. } \quad x \in B\left(x, \epsilon_{3}\right) \subseteq S \cap T
$$

which implies that $x \in \operatorname{Int}_{\epsilon_{0}}(S \cap T)$. (2) By (1), we have

$$
\operatorname{Int}_{\epsilon_{0}}\left(S^{C} \cap T^{C}\right)=\operatorname{Int}_{\epsilon_{0}}\left(S^{C}\right) \cap \operatorname{Int}_{\epsilon_{0}}\left(T^{C}\right) .
$$

Since $\operatorname{Int}_{\epsilon_{0}}\left(S^{C}\right)=\operatorname{Ext}_{\epsilon_{0}}(S)$, we have the desired result $\operatorname{Ext}_{\epsilon_{0}}(S \cup T)=$ $\operatorname{Ext}_{\epsilon_{0}}(S) \cap \operatorname{Ext}_{\epsilon_{0}}(T)$.

Note that $\operatorname{Int}_{\epsilon_{0}}(S) \cup \operatorname{Int}_{\epsilon_{0}}(T) \subseteq \operatorname{Int}_{\epsilon_{0}}(S \cup T)$ in general.
Theorem 2.16. Let S, T be any subsets of R^{m} and suppose that $\epsilon_{0} \geq 0$. Then $C l_{\epsilon_{0}}(S \cup T)=C l_{\epsilon_{0}}(S) \cup C l_{\epsilon_{0}}(T)$.

Proof. By the corollary 2.8 and the lemma 2.15, we have

$$
\begin{aligned}
\overline{(S \cup T)}_{\left(\epsilon_{0}\right)} & =\left[\left\{(S \cup T)^{C}\right\}_{\left(\epsilon_{0}\right)}^{o}\right]^{C} \\
& =\left[\left\{\left(S^{C} \cap T^{C}\right)\right\}_{\left(\epsilon_{0}\right)}^{o}\right]^{C} \\
& =\left\{\left(S^{C}\right)_{\left(\left(\epsilon_{0}\right)\right.}^{o} \cap\left(T^{C}\right)_{\left(\epsilon_{0}\right)}^{o}\right\}^{C} \\
& \left.=\left\{\left(S^{C}\right)_{\left(\epsilon_{0}\right)}^{o}\right\}^{C} \cup\left\{\left(T^{C}\right)_{\left(\epsilon_{0}\right)}^{o}\right\}\right\}^{C} \\
& =\bar{S}_{\left(\epsilon_{0}\right)} \cup \bar{T}_{\left(\epsilon_{0}\right)}
\end{aligned}
$$

which completes the proof.

3. Thickness

By the corollary 2.13, we have $\{\partial \bar{S}\}^{\circ}=\emptyset$ for all subsets of R^{m}. But the similar relation $\left\{\partial_{\epsilon_{0}} \bar{S}\right\}_{\left(\epsilon_{0}\right)}^{\circ}=\emptyset$ is not true in general if $\epsilon_{0} \neq 0$. For if $S=\{A, B, C\}$ is the vertices of the equilateral triangle in R^{2}, then we have $\frac{A+B+C}{3} \in\left\{\partial_{\epsilon_{0}} \bar{S}\right\}_{\left(\epsilon_{0}\right)}^{\circ}$ with $\epsilon_{0}=\|A-B\|$. This leads us to the following concept of the thickness.

Definition 3.1. Let S be a non-empty subset of R^{m} and $\epsilon_{0} \geq 0$. Then S is said to be ϵ_{0}-thick at a point $p \in S$ if and only if $p \in \operatorname{Int}_{\epsilon_{0}}(S)$. In this case, we call that p is an ϵ_{0}-thick point or spot of S.

Note that $\operatorname{Int} \epsilon_{0}(S)$ is the set of all the ϵ_{0}-thick points of S. We call the closure $\overline{I n t_{\epsilon_{0}}(S)}$ the ϵ_{0}-core of S. In according to the theorem 2.11, the ϵ_{0}-core of S is the closure of the set $\operatorname{Int}_{\epsilon_{0}}(S)=S-\underset{x \in \partial S}{\cup} \bar{B}\left(x, \epsilon_{0}\right)$.

Note also that if S is ϵ_{0}-thick at a point $p \in S$ then S is ϵ-thick at a point $p \in S$ for all $0<\epsilon<\epsilon_{1}$ for some ϵ_{1} with $\epsilon_{0}<\epsilon_{1}$.

Definition 3.2. Let S be a non-empty subset of R^{m} and $\epsilon_{0} \geq 0$. Then S is said to be not ϵ_{0}-thick anywhere or nowhere ϵ_{0}-thick if and only if Int $_{\epsilon_{0}}(S)=\emptyset$.

Theorem 3.3. Let S be any subsets of R^{m} and suppose that $\epsilon_{0} \geq 0$. If $B d_{\epsilon_{0}}(S)$ is nowhere ϵ_{0}-thick then $B d(S)$ is closed and nowhere dense, but not conversely.

Proof. The boundary $B d(S)$ is clearly closed in R^{m}. Suppose that $B d(S)$ is not nowhere dense. Then $\operatorname{Int}(B d(S)) \neq \emptyset$. Hence there is a point $x_{0} \in B d(S)$ such that $B\left(x_{0}, \epsilon_{1}\right) \subseteq B d(S)$ for some positive real number $\epsilon_{1}>0$. Then we have

$$
x_{0} \in B\left(x_{0}, \epsilon_{0}+\frac{\epsilon_{1}}{2}\right) \subseteq \underset{x \in B d(S)}{\cup} \bar{B}\left(x, \epsilon_{0}\right)=B d_{\epsilon_{0}}(S) .
$$

Thus we have $x_{0} \in \operatorname{Int} \epsilon_{0}\left(B d_{\epsilon_{0}}(S)\right)$. Hence $B d_{\epsilon_{0}}(S)$ is $\epsilon_{0}-$ thick at x_{0}. In order to show that the converse is not true in general, choose the open set $S=B\left(0, \epsilon_{0}\right)$ with $\epsilon_{0}>0$. Then we have $B d(S)=\left\{x \in R^{m} \mid\|x-0\|=\right.$ $\left.\epsilon_{0}\right\}=S\left(0, \epsilon_{0}\right)$. The sphere $S\left(0, \epsilon_{0}\right)$ is closed and nowhere dense. But we have

$$
0 \in B\left(0, \frac{3}{2} \epsilon_{0}\right) \subseteq \bigcup_{x \in B d(S)} \bar{B}\left(x, \epsilon_{0}\right)=B d_{\epsilon_{0}}(S)
$$

Hence $B d_{\epsilon_{0}}(S)$ is ϵ_{0}-thick at the origin 0 .
Let u be any non-zero vector in R^{m}. Let's denote the orthogonal space by $u^{\perp}=\left\{z \in R^{m}: z \cdot u=0\right\}$. Recall that the projection of a vector $x \in R^{m}$ along the vector u is given by $\operatorname{proj}_{u}(x)=\frac{u \cdot x}{u \cdot u} u$. Let's denote the parallel projection from R^{m} to u^{\perp} by $\Pi_{\left(u^{\perp}\right)}(x)=x-\operatorname{proj}_{u}(x)$.

Theorem 3.4. Let S be any subsets of R^{m} and suppose that $\epsilon_{0} \geq 0$. If S is ϵ_{0}-thick at a point $p \in S$ in R^{m} then for any non-zero vector $u \in R^{m}$ the set $\Pi_{\left(u^{\perp}\right)}(S)=\left\{\Pi_{\left(u^{\perp}\right)}(x): x \in S\right\}$ is ϵ_{0}-thick at the point $\Pi_{\left(u^{\perp}\right)}(p)$ in the $m-1$ dimensional space $\Pi_{\left(u^{\perp}\right)}\left(R^{m}\right)$, but not conversely.

Proof. Suppose that S is ϵ_{0}-thick at a point $p \in S$ in R^{m} and let u be any non-zero vector in R^{m}. Then there is a positive real number $\epsilon_{1}>\epsilon_{0}$ such that $p \in B\left(p, \epsilon_{1}\right) \subseteq S$. Hence we have

$$
\Pi_{\left(u^{\perp}\right)}(p) \in \Pi_{\left(u^{\perp}\right)}\left(B\left(p, \epsilon_{1}\right)\right) \subseteq \Pi_{\left(u^{\perp}\right)}(S) .
$$

This completes the proof of the first part since $\Pi_{\left(u^{\perp}\right)}\left(B\left(p, \epsilon_{1}\right)\right)$ is an open ball in $\Pi_{\left(u^{\perp}\right)}\left(R^{m}\right)$ with the same radius ϵ_{1}. Now let $\{A, B, C\}$ be the vertices of the equilateral triangle in R^{2} with $\|A-B\|=2 \epsilon_{0}$. Then the
set $S=B\left(A, \epsilon_{0}\right) \cup B\left(B, \epsilon_{0}\right) \cup B\left(C, \epsilon_{0}\right)$ is not ϵ_{0}-thick at any point. But the set $\Pi_{\left(u^{\perp}\right)}(S)$ is obviously ϵ_{0}-thick at some point for any direction u in R^{m}.

Lemma 3.5. Let $\epsilon_{0}>0$ be given. If $P, Q \in R^{2}$ are distinct points with $\|P-Q\|<2 \epsilon_{0}$, then there are two points $U, V \in R^{2}$ such that $\|U-P\|=\|U-Q\|=\epsilon_{0}=\|V-P\|=\|V-Q\|$.

Proof. We clearly have $S\left(P, \epsilon_{0}\right) \cap S\left(Q, \epsilon_{0}\right)=\{U, V\}$.
Remark 3.6. It is obvious that Int $_{\epsilon_{0}}\left[\bar{B}\left(P, \epsilon_{0}\right) \cup \bar{B}\left(Q, \epsilon_{0}\right)\right]=\emptyset$ for any two points P, Q in R^{2}.

Theorem 3.7. Let $P, Q, U, V \in R^{2}$ be the four points in the above lemma with P on the left, Q on the right, U at the top and V at the bottom. If a point $T \in R^{2}$ is an element of the intersection $\bar{B}\left(U, \epsilon_{0}\right) \cap$ $\bar{B}\left(V, \epsilon_{0}\right)$ then we have

$$
\operatorname{Int}_{\epsilon_{0}}\left[\bar{B}\left(P, \epsilon_{0}\right) \cup \bar{B}\left(Q, \epsilon_{0}\right) \cup \bar{B}\left(T, \epsilon_{0}\right)\right]=\emptyset .
$$

Proof. Put $Z=\bar{B}\left(P, \epsilon_{0}\right) \cup \bar{B}\left(Q, \epsilon_{0}\right) \cup \bar{B}\left(T, \epsilon_{0}\right)$. If T is a boundary point of the intersection $\bar{B}\left(U, \epsilon_{0}\right) \cap \bar{B}\left(V, \epsilon_{0}\right)$ then the three spheres $S\left(T, \epsilon_{0}\right), S\left(P, \epsilon_{0}\right)$ and $S\left(Q, \epsilon_{0}\right)$ meet at the point U or V. Suppose that they meet at the point V. Then for any point $x \in \bar{B}\left(V, \epsilon_{0}\right)$ we have $\|x-V\| \leq \epsilon_{0}$. Since V is a boundary point of the union Z, this implies that any point x in the set $\bar{B}\left(V, \epsilon_{0}\right) \cap Z$ is not an ϵ_{0}-interior point of Z. Since the sphere $S\left(V, \epsilon_{0}\right)$ passes through the center points P, Q, T of the three spheres $S\left(P, \epsilon_{0}\right), S\left(Q, \epsilon_{0}\right)$ and $S\left(T, \epsilon_{0}\right)$, we also have $\operatorname{dist}\left(x, \partial\left(Z-\bar{B}\left(V, \epsilon_{0}\right)\right)\right) \leq \epsilon_{0}$ for all the points $x \in Z-\bar{B}\left(V, \epsilon_{0}\right)$. Thus we have $\operatorname{Int}_{\epsilon_{0}}(Z)=\emptyset$. The proof of the case where they meet at the point U is similarly handled. On the other hand, suppose that the point T is in the interior of the intersection $\bar{B}\left(U, \epsilon_{0}\right) \cap \bar{B}\left(V, \epsilon_{0}\right)$. Then the center points U, V are in the open ball $B\left(T, \epsilon_{0}\right)$ and the sphere $S\left(T, \epsilon_{0}\right)$ meets the boundary of the union $\bar{B}\left(P, \epsilon_{0}\right) \cup \bar{B}\left(Q, \epsilon_{0}\right)$ at the four points, say A, B, C and D. Let's call the point on the upper left A, the point on the lower left B, the point on the upper right C and the point on the lower right D. Then, for any point x of the union of the rhombi $\triangle A P B T$ and $\diamond C T D Q$, we have $\operatorname{dist}(x, \partial(Z)) \leq \epsilon_{0}$ since the points A, B, C and D are in the boundary of Z. And, for any point x in the union of the four circular sectors $\circlearrowleft A P B, \circlearrowleft A T C, \circlearrowleft B T D$ and $\circlearrowleft C Q D$, we also have $\operatorname{dist}(x, \partial(Z)) \leq \epsilon_{0}$ since all of the circular arcs of these four
circular sectors are parts of the boundary of Z. Therefore, we have $\operatorname{dist}(x, \partial(Z)) \leq \epsilon_{0}$ for all the points $x \in Z$. Consequently, we have Int $_{\epsilon_{0}}(Z)=\emptyset$.

Corollary 3.8. Let P_{1}, P_{2}, P_{3} be three points in R^{2}. Suppose that

$$
\operatorname{Int}_{\epsilon_{0}}\left[\bar{B}\left(P_{1}, \epsilon_{0}\right) \cup \bar{B}\left(P_{2}, \epsilon_{0}\right) \cup \bar{B}\left(P_{3}, \epsilon_{0}\right)\right] \neq \emptyset .
$$

Then we have
(1) $S\left(P_{1}, \epsilon_{0}\right) \cap S\left(P_{2}, \epsilon_{0}\right)=\left\{U_{1}, V_{2}\right\}$ and $P_{3} \notin \bar{B}\left(U_{1}, \epsilon_{0}\right) \cap \bar{B}\left(V_{2}, \epsilon_{0}\right)$
(2) $S\left(P_{2}, \epsilon_{0}\right) \cap S\left(P_{3}, \epsilon_{0}\right)=\left\{U_{2}, V_{3}\right\}$ and $P_{1} \notin \bar{B}\left(U_{2}, \epsilon_{0}\right) \cap \bar{B}\left(V_{3}, \epsilon_{0}\right)$
(3) $S\left(P_{3}, \epsilon_{0}\right) \cap S\left(P_{1}, \epsilon_{0}\right)=\left\{U_{3}, V_{1}\right\}$ and $P_{2} \notin \bar{B}\left(U_{3}, \epsilon_{0}\right) \cap \bar{B}\left(V_{1}, \epsilon_{0}\right)$.

Proof. (1) From the theorem just above, if $S\left(P_{1}, \epsilon_{0}\right) \cap S\left(P_{2}, \epsilon_{0}\right)=$ $\left\{U_{1}, V_{2}\right\}$ and $P_{3} \in \bar{B}\left(U_{1}, \epsilon_{0}\right) \cap \bar{B}\left(V_{2}, \epsilon_{0}\right)$ then

$$
\operatorname{Int}_{\epsilon_{0}}\left[\bar{B}\left(P_{1}, \epsilon_{0}\right) \cup \bar{B}\left(P_{2}, \epsilon_{0}\right) \cup \bar{B}\left(P_{3}, \epsilon_{0}\right)\right]=\emptyset .
$$

The proofs of (2) and (3) are quite similar to the proof of (1) and we omit them.

Theorem 3.9. Let P, Q, U, V be the four mutually distinct points in R^{2} such that $S\left(P, \epsilon_{0}\right) \cap S\left(Q, \epsilon_{0}\right)=\{U, V\}$ with P on the left, Q on the right, U at the top and V at the bottom. If a point $T \in R^{2}$ is an element of the union

$$
\left[B\left(U, \epsilon_{0}\right)-\bar{B}\left(V, \epsilon_{0}\right)\right] \cup\left[B\left(V, \epsilon_{0}\right)-\bar{B}\left(U, \epsilon_{0}\right)\right]
$$

then $Z=\bar{B}\left(P, \epsilon_{0}\right) \cup \bar{B}\left(Q, \epsilon_{0}\right) \cup \bar{B}\left(T, \epsilon_{0}\right)$ is ϵ_{0}-thick at some point.
Proof. We need only to prove the case where $T \in\left[B\left(U, \epsilon_{0}\right)-\bar{B}\left(V, \epsilon_{0}\right)\right]$ since the another case is similarly handled. Then we have $U \in B\left(T, \epsilon_{0}\right)$ and $V \notin \bar{B}\left(T, \epsilon_{0}\right)$. And the sphere $S\left(T, \epsilon_{0}\right)$ meets the boundary of the set $\bar{B}\left(P, \epsilon_{0}\right) \cup \bar{B}\left(Q, \epsilon_{0}\right)$ at two points, say L on the left, R on the right. Consider the triangle $\triangle L V R$. Let's denote by V^{\prime} the point at which the line segment connecting the midpoint $\frac{L+R}{2}$ and the vertex V intersects the sphere $S\left(T, \epsilon_{0}\right)$. Now if $\angle L V^{\prime} R \leq \frac{\pi}{2}$ then the radius of the circumscribed circle of the triangles $\triangle L V^{\prime} R$ is ϵ_{0} and $0<\angle L V R<\angle L V^{\prime} R \leq \frac{\pi}{2}$. Hence if r is the radius of the circumscribed circle of the triangle $\triangle L V R$ then we have

$$
2 \epsilon_{0}=\frac{\overline{L R}}{\sin \left(\angle L V^{\prime} R\right)}<\frac{\overline{L R}}{\sin (\angle L V R)}=2 r \text {, i.e., } \epsilon_{0}<r \text {. }
$$

On the other hand, if $\angle L V^{\prime} R>\frac{\pi}{2}$ then the point T is positioned higher than the line segment $\overline{L R}$. In this case, let C be the image of the reflection of the circle $S\left(T, \epsilon_{0}\right)$ with respect to the line segment $\overline{L R}$. Let's denote by $V^{\prime \prime}$ the point at which the line segment connecting the midpoint $\frac{L+R}{2}$ and the vertex V intersects this circle C. Then the point $V^{\prime \prime}$ lies inside the triangle $\triangle L V R$ and we have $\angle L V^{\prime \prime} R \leq \frac{\pi}{2}$. Hence the radius r of the circumscribed circle of the triangle $\triangle L V R$ still satisfies the relation $\epsilon_{0}<r$ since the radius of the circumscribed circle of the triangles $\triangle L V^{\prime \prime} R$ is ϵ_{0} and $0<\angle L V R<\angle L V^{\prime \prime} R \leq \frac{\pi}{2}$. Since the three sides $\overline{L V}, \overline{R V}$ and $\overline{L R}$ of the triangle $\triangle L V R$ are parts of the closed balls $\bar{B}\left(P, \epsilon_{0}\right), \bar{B}\left(Q, \epsilon_{0}\right)$ and $\bar{B}\left(T, \epsilon_{0}\right)$, respectively, the circumscribed circle and its interior of the triangle $\triangle L V R$ is a subset of the union Z. Thus Z contains an open ball with radius $\frac{\epsilon_{0}+r}{2}$ which implies that $\operatorname{Int}_{\epsilon_{0}}(Z) \neq$ \emptyset.

Theorem 3.10. (Three points thickness) Let P, Q be the two distinct points in R^{2} with $\|P-Q\|<2 \epsilon_{0}$ such that $S\left(P, \epsilon_{0}\right) \cap S\left(Q, \epsilon_{0}\right)=\{U, V\}$ with P on the left, Q on the right, U at the top and V at the bottom. For a point $T \in R^{2}$, the union $Z=\bar{B}\left(P, \epsilon_{0}\right) \cup \bar{B}\left(Q, \epsilon_{0}\right) \cup \bar{B}\left(T, \epsilon_{0}\right)$ is $\epsilon_{0}-$ thick at some point of Z if and only if

$$
T \in\left\{B\left(U, \epsilon_{0}\right)-\bar{B}\left(V, \epsilon_{0}\right)\right\} \cup\left\{B\left(V, \epsilon_{0}\right)-\bar{B}\left(U, \epsilon_{0}\right)\right\} .
$$

Proof. By means of the theorems 3.7 and 3.9, we need only to prove that if $T \notin B\left(U, \epsilon_{0}\right) \cup B\left(V, \epsilon_{0}\right)$ then Z is nowhere ϵ_{0}-thick. Suppose that $T \notin B\left(U, \epsilon_{0}\right) \cup B\left(V, \epsilon_{0}\right)$. Then we have $U, V \notin B\left(T, \epsilon_{0}\right)$. Now there are three cases depending on the relative position of the two points U, V with respect to the sphere $S\left(T, \epsilon_{0}\right)$.

Case I. $U, V \notin S\left(T, \epsilon_{0}\right)$. In this case, the intersection of the sphere $S\left(T, \epsilon_{0}\right)$ and the boundary of the union $\bar{B}\left(P, \epsilon_{0}\right) \cup \bar{B}\left(Q, \epsilon_{0}\right)$ is a subset A of R^{2} consisting of no point, one point, two points, three points or four points. But all the points of the union $A \cup\{U, V\}$ are the boundary point of the union Z. Hence we have $\operatorname{Int}_{\epsilon_{0}}(Z)=\emptyset$.

Case II. U or $V \in S\left(T, \epsilon_{0}\right)$ and $S\left(T, \epsilon_{0}\right) \cap \partial\left[\bar{B}\left(P, \epsilon_{0}\right) \cup \bar{B}\left(Q, \epsilon_{0}\right)\right]$ is consisting of the two elements. In this case, we may assume that this intersection contains the point V since the case where it contains U is similarly handled. Then we have $\|x-V\| \leq 2 \epsilon_{0}$ for all the points $x \in Z$. Since V is a boundary point of Z, this implies that $\operatorname{Int}_{\epsilon_{0}}(Z)=\emptyset$.

Case III. U or $V \in S\left(T, \epsilon_{0}\right)$ and $S\left(T, \epsilon_{0}\right) \cap \partial\left[\bar{B}\left(P, \epsilon_{0}\right) \cup \bar{B}\left(Q, \epsilon_{0}\right)\right]$ is consisting of the three elements. In this case, we may also assume that
the set of the last intersection is $\{E, V, F\}$ with $E \in S\left(T, \epsilon_{0}\right) \cap S\left(P, \epsilon_{0}\right)$. Since the quadrilaterals$P E T V$ and $\square Q V T F$ are the rhombi, we have $\overline{P Q}=\overline{E F}$. Similarly, we have $\overline{E U}=\overline{T Q}$ and $\overline{P T}=\overline{U F}$ by using the appropriate rhombi. Thus the triangles $\triangle U E F$ and $\triangle P Q T$ are congruent. Since $\overline{P V}=\overline{T V}=\overline{Q V}=\epsilon_{0}$, the point V is the circumcenter of the triangle $\triangle P Q T$. Hence the radius of the circumscribed circle of $\triangle U E F$ is ϵ_{0}. Since all the three points U, E, F are the boundary points of Z, this implies that $I n t_{\epsilon_{0}}(Z)=\emptyset$.

References

[1] Buhyeon Kang, An Introduction to ϵ_{0}-Density and ϵ_{0}-Dense Ace, JCMS. 32 (1) (2019).
[2] Buhyeon Kang, The sequential attainability and attainable ace, Korean J. Math. 26 (4)(2018).
[3] Yong Chan Kim and Jung Mi Ko, The properties of rough approximations, Korean J. Math. 19 (2)(2011).
[4] Yong Chan Kim and Jung Mi Ko, L-fuzzy bi-closure systems and L-fuzzy biclosure operators, Korean J. Math. 27 (2) (2019).
[5] Shyamapada Modak and Ahmad Abdullah Al-omari, Generalized Closed Sets in Binary Ideal Topological Spaces, JCMS. 31 (1) (2018).
[6] M.Bala Prabhakar, S.Kalesha Vali, and M. Sambasiva Rao, Closed and Dense Elements of BE-algebras, JCMS. 32 (1) (2019).

Buhyeon Kang

Department of Mathematics, Seokyeong University
Seoul 02713, Korea
E-mail: gangage@skuniv.ac.kr

