Korean J. Math. **28** (2020), No. 3, pp. 573–585 http://dx.doi.org/10.11568/kjm.2020.28.3.573

# ON THE GENERALIZED BOUNDARY AND THICKNESS

#### BUHYEON KANG

ABSTRACT. We introduced the concepts of the generalized accumulation points and the generalized density of a subset of the Euclidean space in [1] and [2]. Using those concepts, we introduce the concepts of the generalized closure, the generalized interior, the generalized exterior and the generalized boundary of a subset and investigate some properties of these sets. The generalized boundary of a subset is closely related to the classical boundary. Finally, we also introduce and study a concept of the thickness of a subset.

#### 1. Introduction

In this section, we introduce a concept of the generalized closure of a set and study some properties of the generalized dense subset which we need later. Throughout this paper,  $\epsilon_0 \geq 0$  denotes any, but fixed, non-negative real number. We denote the open ball, the closed ball and the sphere with radius  $\epsilon$  and center at  $\alpha$  in the space  $R^m$  by  $B(\alpha, \epsilon) =$  $\{x \in R^m : ||x - \alpha|| < \epsilon\}, \overline{B}(\alpha, \epsilon) = \{x \in R^m : ||x - \alpha|| \le \epsilon\}$  and  $S(\alpha, \epsilon) = \{x \in R^m : ||x - \alpha|| = \epsilon\}$ , respectively.

DEFINITION 1.1. Let S be a subset of  $\mathbb{R}^m$ . A point  $a \in \mathbb{R}^m$  is an  $\epsilon_0$ -accumulation point of the subset S if and only if  $B(a, \epsilon) \cap (S - \{a\}) \neq \emptyset$  for all  $\epsilon > \epsilon_0$ . And a point  $a \in S$  is an  $\epsilon_0$ -isolated point of S if and only if  $B(a, \epsilon_1) \cap (S - \{a\}) = \emptyset$  for some positive number  $\epsilon_1 > \epsilon_0$ .

2010 Mathematics Subject Classification: 03H05, 26E35.

Key words and phrases:  $\epsilon_0$ -interior,  $\epsilon_0$ -exterior,  $\epsilon_0$ -boundary,  $\epsilon_0$ -thick.

© The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Received July 17, 2020. Revised September 11, 2020. Accepted September 11, 2020.

DEFINITION 1.2. For a subset S of  $\mathbb{R}^m$ , we define the  $\epsilon_0$ -derived set of S as the set of all the  $\epsilon_0$ -accumulation points of S and denote it by  $S'_{(\epsilon_0)}$ .

DEFINITION 1.3. Let S be a subset of  $\mathbb{R}^m$ . The  $\epsilon_0$ -closure of S is defined by  $\overline{S}_{(\epsilon_0)} = Cl_{\epsilon_0}(S) = S'_{(\epsilon_0)} \cup S$ .

DEFINITION 1.4. Let E be any non-empty and open subset of  $\mathbb{R}^m$ and  $\epsilon_0 \geq 0$ . And let a subset D of E be given. We define that D is an  $\epsilon_0$ -dense subset of E in E if and only if  $E \subseteq \overline{D}_{(\epsilon_0)}$ . In this case, we say that D is  $\epsilon_0$ -dense in E.

DEFINITION 1.5. Let E be an open non-empty subset of  $\mathbb{R}^m$ . And let D be an  $\epsilon_0$ -dense subset of E in E. An element  $a \in D$  is called a point of the  $\epsilon_0$ -dense ace of D in E if and only if  $D - \{a\}$  is not  $\epsilon_0$ -dense in E.

LEMMA 1.6. Let E be an open subset of  $\mathbb{R}^m$  and D be a non-empty subset of E. Suppose that  $E \subseteq \bigcup_{b \in D} \overline{B}(b, \epsilon_0)$ . Then D is  $\epsilon_0$ -dense in E.

*Proof.* See the proof of the lemma 2.10 in [1].

LEMMA 1.7. Let D be a non-empty subset of an open subset E of  $\mathbb{R}^m$  and  $\overline{D} = D'_{(0)} \cup D$ . Then D is  $\epsilon_0$ -dense in E if and only if  $E \subseteq \bigcup_{b \in \overline{D}} \overline{B}(b, \epsilon_0)$ .

*Proof.* See the proof of the theorem 2.11 in [1].

#### 2. The generalized interior and boundary

In this section, we investigate about the concepts of the  $\epsilon_0$ -interior, the  $\epsilon_0$ -exterior and the  $\epsilon_0$ -boundary of subsets in  $\mathbb{R}^m$  and research the shapes of these sets. Throughout this section,  $\epsilon_0 \geq 0$  denotes any, but fixed, non-negative real number unless otherwise stated.

DEFINITION 2.1. Let S be a subset of  $\mathbb{R}^m$ . A point x is called the  $\epsilon_0$ -interior point of S if and only if there is a positive real number  $\epsilon_1 > \epsilon_0$ such that  $x \in B(x, \epsilon_1) \subseteq S$ . Let's denote the set of all the  $\epsilon_0$ -interior points of S in  $\mathbb{R}^m$  by  $Int_{\epsilon_0}(S)$  or  $S^o_{(\epsilon_0)}$ .

DEFINITION 2.2. Let S be a subset of  $\mathbb{R}^m$ . A point x is called the  $\epsilon_0$ -boundary point of S if and only if  $B(x, \epsilon_1) \cap S \neq \emptyset$  and  $B(x, \epsilon_1) \cap S^C \neq \emptyset$  for each positive real number  $\epsilon_1 > \epsilon_0$ . Let's denote the set of all the  $\epsilon_0$ -boundary points of S in  $\mathbb{R}^m$  by  $Bd_{\epsilon_0}(S)$  or  $\partial_{\epsilon_0}S$ .

DEFINITION 2.3. Let S be a subset of  $\mathbb{R}^m$ . A point x is called the  $\epsilon_0$ -exterior point of S if and only if x is an  $\epsilon_0$ -interior point of  $S^C = \mathbb{R}^m - S$ . Let's denote the set of all the  $\epsilon_0$ -exterior points of S in  $\mathbb{R}^m$  by  $Ext_{\epsilon_0}(S)$ .

REMARK 2.4. The union  $R^m = Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S) \cup Ext_{\epsilon_0}(S)$  is the mutually disjoint one,  $S^o_{(0)} = S^o$  and  $Int_{\epsilon_0}(S) \subseteq Int_0(S) = S^o$  for all  $\epsilon_0 \geq 0$ .

LEMMA 2.5. Let S be a subset of  $\mathbb{R}^m$  and suppose that  $\epsilon_0 \geq 0$ . Then  $Int_{\epsilon_0}(S)$  and  $Ext_{\epsilon_0}(S)$  are open subsets of  $\mathbb{R}^m$ . Hence  $Bd_{\epsilon_0}(S)$  is closed in  $\mathbb{R}^m$ .

*Proof.* Let any element  $x \in Int_{\epsilon_0}(S)$  be given. Then there is a positive real number  $\epsilon_1 > \epsilon_0$  such that  $x \in B(x, \epsilon_1) \subseteq S$ . Consider the set  $B(x, \frac{1}{3}(\epsilon_1 - \epsilon_0))$ . For any point  $y \in B(x, \frac{1}{3}(\epsilon_1 - \epsilon_0))$ , we have, for any point  $z \in B(y, \epsilon_0 + \frac{1}{3}(\epsilon_1 - \epsilon_0))$ ,

$$\begin{aligned} \|x - z\| &\leq \|x - y\| + \|y - z\| \\ &< \frac{1}{3}(\epsilon_1 - \epsilon_0) + \epsilon_0 + \frac{1}{3}(\epsilon_1 - \epsilon_0) \\ &< \epsilon_0 + \epsilon_1 - \epsilon_0 = \epsilon_1. \end{aligned}$$

Hence we have  $B(y, \epsilon_0 + \frac{1}{3}(\epsilon_1 - \epsilon_0)) \subseteq B(x, \epsilon_1) \subseteq S$ . Thus we have  $y \in Int_{\epsilon_0}(S)$  since  $\epsilon_0 + \frac{1}{3}(\epsilon_1 - \epsilon_0) > \epsilon_0$ . Therefore, we have

$$x \in B(x, \frac{1}{3}(\epsilon_1 - \epsilon_0)) \subseteq Int_{\epsilon_0}(S).$$

This implies that  $Int_{\epsilon_0}(S)$  is open. And  $Ext_{\epsilon_0}(S)$  is also open since it is the  $\epsilon_0$ -interior of  $S^C$ . Since  $R^m = Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S) \cup Ext_{\epsilon_0}(S)$  is the disjoint union,  $Bd_{\epsilon_0}(S) = R^m - \{Int_{\epsilon_0}(S) \cup Ext_{\epsilon_0}(S)\}$  is closed in  $R^m$ .

LEMMA 2.6. Let S be a subset of  $R^m$  and suppose that  $\epsilon_0 \geq 0$ . Then we have  $S'_{(\epsilon_0)} \subseteq Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S)$ .

*Proof.* Let any element  $x \in S'_{(\epsilon_0)}$  be given. Since  $R^m = Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S) \cup Ext_{\epsilon_0}(S)$  is a disjoint union, we need only to show that  $x \notin C$ 

 $Ext_{\epsilon_0}(S)$ . To the contrary, assume that  $x \in Ext_{\epsilon_0}(S)$ . Then there is  $\epsilon_1 > \epsilon_0$  such that  $x \in B(x, \epsilon_1) \subseteq S^C$ . Hence  $B(x, \epsilon_1) \cap S = \emptyset$ . This is a contradiction since  $x \in S'_{(\epsilon_0)}$ .

THEOREM 2.7. Let S be a subset of  $\mathbb{R}^m$  and suppose that  $\epsilon_0 \geq 0$ . Then  $\overline{S}_{(\epsilon_0)} = Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S)$ .

*Proof.* Since  $R^m = Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S) \cup Ext_{\epsilon_0}(S)$  is the disjoint union and S is disjoint from  $Ext_{\epsilon_0}(S)$ , we have  $S \subseteq Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S)$ . Hence, by lemma 2.6, we have

$$\overline{S}_{(\epsilon_0)} = S \cup S'_{(\epsilon_0)} \subseteq Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S).$$

In order to prove the equality, let any element  $x \in Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S)$ be given. If  $x \in S$  then we are done. Suppose that  $x \notin S$ . Then  $x \notin Int_{\epsilon_0}(S)$ . Thus we have  $x \in Bd_{\epsilon_0}(S)$ . Hence we have

$$\forall \epsilon_1 > \epsilon_0, B(x, \epsilon_1) \cap S \neq \emptyset \text{ and } B(x, \epsilon_1) \cap S^C \neq \emptyset.$$

Thus we have  $\exists y_{\epsilon_1} \in S$  s.t.  $y_{\epsilon_1} \in B(x, \epsilon_1)$ . Since  $y_{\epsilon_1} \neq x$ , we have

$$\forall \epsilon_1 > \epsilon_0, \ y_{\epsilon_1} \in B(x, \epsilon_1) \cap (S - \{x\}) \neq \emptyset.$$

This implies that  $x \in S'_{(\epsilon_0)}$  which completes the proof.

COROLLARY 2.8. Let S be a subset of  $\mathbb{R}^m$  and suppose that  $\epsilon_0 \geq 0$ . Then

$$\overline{S}_{(\epsilon_0)} = [\{S^C\}^o_{(\epsilon_0)}]^C.$$

Proof. Since  $R^m = Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S) \cup Ext_{\epsilon_0}(S)$  is the disjoint union and  $\overline{S}_{(\epsilon_0)} = Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S)$ , the union of the equation  $R^m = \overline{S}_{(\epsilon_0)} \cup Ext_{\epsilon_0}(S)$  is the disjoint one. Hence we have  $\{\overline{S}_{(\epsilon_0)}\}^C = Ext_{\epsilon_0}(S) = \{S^C\}_{(\epsilon_0)}^o$ . Thus we have  $\overline{S}_{(\epsilon_0)} = [\{S^C\}_{(\epsilon_0)}^o]^C$ .

THEOREM 2.9. Let S be a subset of  $\mathbb{R}^m$  and suppose that  $\epsilon_0 \geq 0$ . Then  $\mathbb{R}^m - \overline{(\mathbb{R}^m - S)}_{(\epsilon_0)} = Int_{\epsilon_0}(S)$ , i.e.,  $\overline{[S^C]}_{(\epsilon_0)}^C = Int_{\epsilon_0}(S)$ .

*Proof.* By the definition of the  $\epsilon_0$ -closure of the set  $S^C$ , we have  $\overline{[S^C]}_{(\epsilon_0)} = [S^C]'_{(\epsilon_0)} \cup S^C$ . Hence we have  $R^m - \overline{[S^C]}_{(\epsilon_0)} = \{[S^C]'_{(\epsilon_0)}\}^C \cap S$ . Thus we need only to show that  $Int_{\epsilon_0}(S) = \{[S^C]'_{(\epsilon_0)}\}^C \cap S$ . Let any

576

element  $x \in Int_{\epsilon_0}(S)$  be given. Then we have

$$\exists \epsilon_1 > \epsilon_0 \text{ s.t. } x \in B(x, \epsilon_1) \subseteq S$$
  

$$\Rightarrow \quad B(x, \epsilon_1) \cap S^C = \emptyset \text{ and } x \in S$$
  

$$\Rightarrow \quad x \notin [S^C]'_{(\epsilon_0)} \text{ and } x \in S$$
  

$$\Rightarrow \quad x \in \{[S^C]'_{(\epsilon_0)}\}^C \cap S.$$

Conversely, let any element  $x \in \{[S^C]'_{(\epsilon_0)}\}^C \cap S$  be given. Since  $x \in S$  is not a member of  $[S^C]'_{(\epsilon_0)}$ , we have

$$\exists \epsilon_1 > \epsilon_0 \text{ s.t. } B(x, \epsilon_1) \cap (S^C - \{x\}) = \emptyset.$$

Since  $x \in S$  and  $S^C - \{x\} = S^C$ , we also have  $B(x, \epsilon_1) \cap S^C = \emptyset$ . Thus we have  $x \in B(x, \epsilon_1) \subseteq S$ . Therefore, we have  $x \in Int_{\epsilon_0}(S)$  which completes the proof.

THEOREM 2.10. (Representation) Let S be a subset of  $\mathbb{R}^m$  and suppose that  $\epsilon_0 \geq 0$ . Then we have

$$Bd_{\epsilon_0}(S) = \bigcup_{x \in \partial S} \overline{B}(x, \epsilon_0).$$

Moreover, if  $\epsilon_0 > 0$  then  $\partial S$  is an  $\epsilon_0$ -dense subset of the interior of the subset  $Bd_{\epsilon_0}(S)$ .

*Proof.* Let  $x \in \partial S$  and any element  $y \in \overline{B}(x, \epsilon_0)$  be given. For each positive real number  $\epsilon > \epsilon_0$ , we have  $x \in B(y, \epsilon)$ . Hence  $x \in B(x, \epsilon - \epsilon_0) \subseteq B(y, \epsilon)$ . Since  $x \in \partial S$ ,

$$B(x, \epsilon - \epsilon_0) \cap S \neq \emptyset$$
 and  $B(x, \epsilon - \epsilon_0) \cap S^C \neq \emptyset$ .

Thus we have

$$B(y,\epsilon) \cap S \neq \emptyset$$
 and  $B(y,\epsilon) \cap S^C \neq \emptyset$ .

Hence we have  $y \in Bd_{\epsilon_0}(S)$ . Thus we have  $\overline{B}(x, \epsilon_0) \subseteq Bd_{\epsilon_0}(S)$  for all elements  $x \in \partial S$ . Therefore, we have  $\bigcup_{x \in \partial S} \overline{B}(x, \epsilon_0) \subseteq Bd_{\epsilon_0}(S)$ . Conversely, let any element  $y \in Bd_{\epsilon_0}(S)$  be given. For each natural number n, we have

$$B(y, \epsilon_0 + \frac{1}{n}) \cap S \neq \emptyset$$
 and  $B(y, \epsilon_0 + \frac{1}{n}) \cap S^C \neq \emptyset$ 

Hence there are two sequences  $\{w_n\}, \{z_n\}$  in  $\mathbb{R}^m$  such that  $\{w_n\} \subseteq S$ ,  $\{z_n\} \subseteq S^C$  and  $w_n, z_n \in B(y, \epsilon_0 + \frac{1}{n})$  for each natural number n. Since they are bounded, we may assume by using their subsequences that  $\lim_{n \to \infty} w_n = w_0$  and  $\lim_{n \to \infty} z_n = z_0$  for some elements  $w_0 \in \overline{S}$  and  $z_0 \in \overline{S^C}$ .

Note that  $\partial S = \partial S^C$ . If  $w_0 \in \partial S$  or  $z_0 \in \partial S$  then we are done since  $y \in \overline{B}(w_0, \epsilon_0)$  with  $w_0 \in \partial S$  or  $y \in \overline{B}(z_0, \epsilon_0)$  with  $z_0 \in \partial S$ . Now suppose that  $w_0 \notin \partial S$  and  $z_0 \notin \partial S$ . Then we must have  $w_0 \in Int(S)$  and  $z_0 \in Ext(S)$ . Now consider the line segment  $\overline{w_0 z_0}$  joining the points  $w_0$  and  $z_0$ . We have  $\overline{w_0 z_0} \cap \partial S \neq \emptyset$  since  $\overline{w_0 z_0}$  is connected. Choosing an element  $x_0 \in \overline{w_0 z_0} \cap \partial S$ , we have  $x_0 = t_0 w_0 + (1 - t_0) z_0$  for some real number  $0 < t_0 < 1$ . Thus we have

$$\begin{aligned} \|y - x_0\| &= \|t_0 y + (1 - t_0) y - \{t_0 w_0 + (1 - t_0) z_0\} \| \\ &\leq t_0 \|y - w_0\| + (1 - t_0) \|y - z_0\| \\ &\leq t_0 \epsilon_0 + (1 - t_0) \epsilon_0 = \epsilon_0. \end{aligned}$$

Hence  $y \in \overline{B}(x_0, \epsilon_0) \subseteq \bigcup_{x \in \partial S} \overline{B}(x, \epsilon_0)$ . Moreover, if  $\epsilon_0 > 0$  then  $\partial S$  is a subset of the interior of  $Bd_{\epsilon_0}(S)$ . Thus  $\partial S$  is an  $\epsilon_0$ -dense subset of the interior of the subset  $Bd_{\epsilon_0}(S)$  by the lemma 1.6.

THEOREM 2.11. (Core) Let S be a subset of  $\mathbb{R}^m$  and suppose that  $\epsilon_0 \geq 0$ . Then

$$Int_{\epsilon_0}(S) = S - \bigcup_{x \in \partial S} \overline{B}(x, \epsilon_0).$$

Proof. By the theorem just above, we need only to show that  $Int_{\epsilon_0}(S) = S - Bd_{\epsilon_0}(S)$ . Let any element  $x \in S - Bd_{\epsilon_0}(S)$  be given. Then  $x \in S$  and  $x \notin Bd_{\epsilon_0}(S)$ . Since  $R^m = Int_{\epsilon_0}(S) \cup Bd_{\epsilon_0}(S) \cup Ext_{\epsilon_0}(S)$  is the disjoint union, we must have  $x \in Int_{\epsilon_0}(S)$ . Conversely, let any element  $x \in Int_{\epsilon_0}(S)$  be given. Then we clearly have  $x \in S$ ,  $x \notin Ext_{\epsilon_0}(S)$  and  $x \notin Bd_{\epsilon_0}(S)$ . Thus we have  $x \in S - Bd_{\epsilon_0}(S)$ .

LEMMA 2.12. A subset F of  $\mathbb{R}^m$  is the boundary of some open subset in  $\mathbb{R}^m$  if and only if F is closed and nowhere dense.

Proof. First, suppose that F is the boundary of some open subset Sin  $\mathbb{R}^m$ . Then it is clear that F is closed. Since the interior S of the set S is disjoint from the boundary F of S, we have  $S \cap F = \emptyset$ . If some point  $x \in F$  is an interior point of F then there is a positive real number  $\epsilon_1 > 0$  such that  $x \in B(x, \epsilon_1) \subseteq F$ . Since  $S \cap F = \emptyset$ , this implies that  $B(x, \epsilon_1) \cap S = \emptyset$ . Thus we have  $x \in B(x, \epsilon_1) \subseteq S^C$ . This implies that  $x \in Ext(S)$ . This is a contradiction since the boundary is disjoint from the exterior. This contradiction implies that F is nowhere dense. Now suppose that F is closed and nowhere dense. Take  $S = F^C$ . Then S is an open subset of  $\mathbb{R}^m$ . We need only to prove that  $F = \partial F^C$ . First, we have  $\partial F^C \cap F^C = \emptyset$  since  $F^C$  is open. Hence we have  $\partial F^C \subseteq F$ . Next,

let any element  $x \in F$  be given. Then  $B(x, \epsilon) \cap F \neq \emptyset$  for all positive real number  $\epsilon > 0$  since this intersection contains the element x. Moreover, the open ball  $B(x, \epsilon)$  cannot be a subset of F for all positive real number  $\epsilon > 0$  since F is nowhere dense. Thus we also have  $B(x, \epsilon) \cap F^C \neq \emptyset$  for all positive real number  $\epsilon > 0$ . Hence we have  $x \in \partial F^C = \partial S$ . Thus  $F = \partial S$ .

COROLLARY 2.13. Let S be any subset of  $\mathbb{R}^m$ . Then  $\{\partial \overline{S}\}^\circ = \emptyset$ .

*Proof.* Let S be any subset of  $\mathbb{R}^m$ . Since  $\overline{S}^C$  is open,  $\partial \overline{S}^C$  is nowhere dense by the lemma just above. But we have  $\partial \overline{S} = \partial \overline{S}^C$ . Hence we have  $\{\partial \overline{S}\}^\circ = \{\partial \overline{S}^C\}^\circ = \emptyset$ .

THEOREM 2.14. Let F be a non-empty subset of  $\mathbb{R}^m$  and  $\epsilon_0 \geq 0$ . Then F is the  $\epsilon_0$ -boundary of some open subset of  $\mathbb{R}^m$  if and only if  $F = \bigcup_{x \in S} \overline{B}(x, \epsilon_0)$  for some closed and nowhere dense subset S of  $\mathbb{R}^m$ .

*Proof.* First, suppose that F is the  $\epsilon_0$ -boundary of some open subset G of  $\mathbb{R}^m$ . Then the boundary  $S = \partial G$  of G is closed and nowhere dense subset of  $\mathbb{R}^m$  by the lemma just above. Moreover, we have

$$F = Bd_{\epsilon_0}(G) = \bigcup_{x \in \partial G} \overline{B}(x, \epsilon_0)$$

by the theorem 2.10. Hence we have  $F = \bigcup_{x \in S} \overline{B}(x, \epsilon_0)$ . Conversely, suppose that  $F = \bigcup_{x \in S} \overline{B}(x, \epsilon_0)$  for some closed and nowhere dense subset S of  $\mathbb{R}^m$ . Then S is the boundary  $\partial G$  of some open subset G of  $\mathbb{R}^m$  by the lemma just above. The  $\epsilon_0$ -boundary of this open subset G is given by  $Bd_{\epsilon_0}(G) = \bigcup_{x \in \partial G} \overline{B}(x, \epsilon_0)$  by the theorem 2.10. Thus F is the  $\epsilon_0$ -boundary of the open subset G.

LEMMA 2.15. Let S, T be any subsets of  $\mathbb{R}^m$  and suppose that  $\epsilon_0 \geq 0$ . Then

(1) 
$$Int_{\epsilon_0}(S \cap T) = Int_{\epsilon_0}(S) \cap Int_{\epsilon_0}(T).$$
  
(2)  $Ext_{\epsilon_0}(S \cup T) = Ext_{\epsilon_0}(S) \cap Ext_{\epsilon_0}(T).$ 

*Proof.* (1) Since  $S \cap T$  is a subset of S and T, we have  $Int_{\epsilon_0}(S \cap T) \subseteq Int_{\epsilon_0}(S) \cap Int_{\epsilon_0}(T)$ . Conversely, if  $x \in Int_{\epsilon_0}(S) \cap Int_{\epsilon_0}(T)$  is any element then we have

 $\exists \epsilon_1 > \epsilon_0 \text{ s.t. } x \in B(x, \epsilon_1) \subseteq S$ 

and

$$\exists \epsilon_2 > \epsilon_0 \text{ s.t. } x \in B(x, \epsilon_2) \subseteq T.$$

Hence we have the statement

 $\exists \epsilon_3 = \min\{\epsilon_1, \epsilon_2\} > \epsilon_0 \text{ s.t. } x \in B(x, \epsilon_3) \subseteq S \cap T$ 

which implies that  $x \in Int_{\epsilon_0}(S \cap T)$ . (2) By (1), we have

$$Int_{\epsilon_0}(S^C \cap T^C) = Int_{\epsilon_0}(S^C) \cap Int_{\epsilon_0}(T^C).$$

Since  $Int_{\epsilon_0}(S^C) = Ext_{\epsilon_0}(S)$ , we have the desired result  $Ext_{\epsilon_0}(S \cup T) = Ext_{\epsilon_0}(S) \cap Ext_{\epsilon_0}(T)$ .

Note that  $Int_{\epsilon_0}(S) \cup Int_{\epsilon_0}(T) \subseteq Int_{\epsilon_0}(S \cup T)$  in general.

THEOREM 2.16. Let S, T be any subsets of  $\mathbb{R}^m$  and suppose that  $\epsilon_0 \geq 0$ . Then  $Cl_{\epsilon_0}(S \cup T) = Cl_{\epsilon_0}(S) \cup Cl_{\epsilon_0}(T)$ .

*Proof.* By the corollary 2.8 and the lemma 2.15, we have

$$\overline{S \cup T}_{(\epsilon_0)} = [\{(S \cup T)^C\}_{(\epsilon_0)}^o]^C \\
= [\{(S^C \cap T^C)\}_{(\epsilon_0)}^o]^C \\
= \{(S^C)_{(\epsilon_0)}^o \cap (T^C)_{(\epsilon_0)}^o\}^C \\
= \{(S^C)_{(\epsilon_0)}^o\}^C \cup \{(T^C)_{(\epsilon_0)}^o\}^C \\
= \overline{S}_{(\epsilon_0)} \cup \overline{T}_{(\epsilon_0)}$$

which completes the proof.

(

## 3. Thickness

By the corollary 2.13, we have  $\{\partial \overline{S}\}^{\circ} = \emptyset$  for all subsets of  $\mathbb{R}^m$ . But the similar relation  $\{\partial_{\epsilon_0} \overline{S}\}^{\circ}_{(\epsilon_0)} = \emptyset$  is not true in general if  $\epsilon_0 \neq 0$ . For if  $S = \{A, B, C\}$  is the vertices of the equilateral triangle in  $\mathbb{R}^2$ , then we have  $\frac{A+B+C}{3} \in \{\partial_{\epsilon_0} \overline{S}\}^{\circ}_{(\epsilon_0)}$  with  $\epsilon_0 = ||A - B||$ . This leads us to the following concept of the thickness.

DEFINITION 3.1. Let S be a non-empty subset of  $\mathbb{R}^m$  and  $\epsilon_0 \geq 0$ . Then S is said to be  $\epsilon_0$ -thick at a point  $p \in S$  if and only if  $p \in Int_{\epsilon_0}(S)$ . In this case, we call that p is an  $\epsilon_0$ -thick point or spot of S.

Note that  $Int_{\epsilon_0}(S)$  is the set of all the  $\epsilon_0$ -thick points of S. We call the closure  $\overline{Int_{\epsilon_0}(S)}$  the  $\epsilon_0$ -core of S. In according to the theorem 2.11, the  $\epsilon_0$ -core of S is the closure of the set  $Int_{\epsilon_0}(S) = S - \bigcup_{x \in \partial S} \overline{B}(x, \epsilon_0)$ .

Note also that if S is  $\epsilon_0$ -thick at a point  $p \in S$  then  $\tilde{S}$  is  $\epsilon$ -thick at a point  $p \in S$  for all  $0 < \epsilon < \epsilon_1$  for some  $\epsilon_1$  with  $\epsilon_0 < \epsilon_1$ .

580

DEFINITION 3.2. Let S be a non-empty subset of  $\mathbb{R}^m$  and  $\epsilon_0 \geq 0$ . Then S is said to be not  $\epsilon_0$ —thick anywhere or nowhere  $\epsilon_0$ —thick if and only if  $Int_{\epsilon_0}(S) = \emptyset$ .

THEOREM 3.3. Let S be any subsets of  $\mathbb{R}^m$  and suppose that  $\epsilon_0 \geq 0$ . If  $Bd_{\epsilon_0}(S)$  is nowhere  $\epsilon_0$ -thick then Bd(S) is closed and nowhere dense, but not conversely.

*Proof.* The boundary Bd(S) is clearly closed in  $\mathbb{R}^m$ . Suppose that Bd(S) is not nowhere dense. Then  $Int(Bd(S)) \neq \emptyset$ . Hence there is a point  $x_0 \in Bd(S)$  such that  $B(x_0, \epsilon_1) \subseteq Bd(S)$  for some positive real number  $\epsilon_1 > 0$ . Then we have

$$x_0 \in B(x_0, \epsilon_0 + \frac{\epsilon_1}{2}) \subseteq \bigcup_{x \in Bd(S)} \overline{B}(x, \epsilon_0) = Bd_{\epsilon_0}(S).$$

Thus we have  $x_0 \in Int_{\epsilon_0}(Bd_{\epsilon_0}(S))$ . Hence  $Bd_{\epsilon_0}(S)$  is  $\epsilon_0$ -thick at  $x_0$ . In order to show that the converse is not true in general, choose the open set  $S = B(0, \epsilon_0)$  with  $\epsilon_0 > 0$ . Then we have  $Bd(S) = \{x \in R^m | \|x - 0\| = \epsilon_0\} = S(0, \epsilon_0)$ . The sphere  $S(0, \epsilon_0)$  is closed and nowhere dense. But we have

$$0 \in B(0, \frac{3}{2}\epsilon_0) \subseteq \bigcup_{x \in Bd(S)} \overline{B}(x, \epsilon_0) = Bd_{\epsilon_0}(S).$$

Hence  $Bd_{\epsilon_0}(S)$  is  $\epsilon_0$ -thick at the origin 0.

Let u be any non-zero vector in  $\mathbb{R}^m$ . Let's denote the orthogonal space by  $u^{\perp} = \{z \in \mathbb{R}^m : z \cdot u = 0\}$ . Recall that the projection of a vector  $x \in \mathbb{R}^m$  along the vector u is given by  $\operatorname{proj}_u(x) = \frac{u \cdot x}{u \cdot u}u$ . Let's denote the parallel projection from  $\mathbb{R}^m$  to  $u^{\perp}$  by  $\Pi_{(u^{\perp})}(x) = x - \operatorname{proj}_u(x)$ .

THEOREM 3.4. Let S be any subsets of  $\mathbb{R}^m$  and suppose that  $\epsilon_0 \geq 0$ . If S is  $\epsilon_0$ -thick at a point  $p \in S$  in  $\mathbb{R}^m$  then for any non-zero vector  $u \in \mathbb{R}^m$  the set  $\Pi_{(u^{\perp})}(S) = \{\Pi_{(u^{\perp})}(x) : x \in S\}$  is  $\epsilon_0$ -thick at the point  $\Pi_{(u^{\perp})}(p)$  in the m-1 dimensional space  $\Pi_{(u^{\perp})}(\mathbb{R}^m)$ , but not conversely.

*Proof.* Suppose that S is  $\epsilon_0$ -thick at a point  $p \in S$  in  $\mathbb{R}^m$  and let u be any non-zero vector in  $\mathbb{R}^m$ . Then there is a positive real number  $\epsilon_1 > \epsilon_0$  such that  $p \in B(p, \epsilon_1) \subseteq S$ . Hence we have

$$\Pi_{(u^{\perp})}(p) \in \Pi_{(u^{\perp})}(B(p,\epsilon_1)) \subseteq \Pi_{(u^{\perp})}(S).$$

This completes the proof of the first part since  $\Pi_{(u^{\perp})}(B(p,\epsilon_1))$  is an open ball in  $\Pi_{(u^{\perp})}(R^m)$  with the same radius  $\epsilon_1$ . Now let  $\{A, B, C\}$  be the vertices of the equilateral triangle in  $R^2$  with  $||A - B|| = 2\epsilon_0$ . Then the

set  $S = B(A, \epsilon_0) \cup B(B, \epsilon_0) \cup B(C, \epsilon_0)$  is not  $\epsilon_0$ -thick at any point. But the set  $\Pi_{(u^{\perp})}(S)$  is obviously  $\epsilon_0$ -thick at some point for any direction uin  $\mathbb{R}^m$ .  $\Box$ 

LEMMA 3.5. Let  $\epsilon_0 > 0$  be given. If  $P, Q \in \mathbb{R}^2$  are distinct points with  $||P - Q|| < 2\epsilon_0$ , then there are two points  $U, V \in \mathbb{R}^2$  such that  $||U - P|| = ||U - Q|| = \epsilon_0 = ||V - P|| = ||V - Q||.$ 

*Proof.* We clearly have  $S(P, \epsilon_0) \cap S(Q, \epsilon_0) = \{U, V\}.$ 

REMARK 3.6. It is obvious that  $Int_{\epsilon_0} \left[\overline{B}(P,\epsilon_0) \cup \overline{B}(Q,\epsilon_0)\right] = \emptyset$  for any two points P, Q in  $\mathbb{R}^2$ .

THEOREM 3.7. Let  $P, Q, U, V \in \mathbb{R}^2$  be the four points in the above lemma with P on the left, Q on the right, U at the top and V at the bottom. If a point  $T \in \mathbb{R}^2$  is an element of the intersection  $\overline{B}(U, \epsilon_0) \cap \overline{B}(V, \epsilon_0)$  then we have

$$Int_{\epsilon_0}\left[\overline{B}(P,\epsilon_0)\cup\overline{B}(Q,\epsilon_0)\cup\overline{B}(T,\epsilon_0)\right]=\emptyset.$$

*Proof.* Put  $Z = \overline{B}(P, \epsilon_0) \cup \overline{B}(Q, \epsilon_0) \cup \overline{B}(T, \epsilon_0)$ . If T is a boundary point of the intersection  $\overline{B}(U,\epsilon_0) \cap \overline{B}(V,\epsilon_0)$  then the three spheres  $S(T, \epsilon_0), S(P, \epsilon_0)$  and  $S(Q, \epsilon_0)$  meet at the point U or V. Suppose that they meet at the point V. Then for any point  $x \in \overline{B}(V, \epsilon_0)$  we have  $||x - V|| \leq \epsilon_0$ . Since V is a boundary point of the union Z, this implies that any point x in the set  $\overline{B}(V,\epsilon_0) \cap Z$  is not an  $\epsilon_0$ -interior point of Z. Since the sphere  $S(V, \epsilon_0)$  passes through the center points P, Q, T of the three spheres  $S(P, \epsilon_0), S(Q, \epsilon_0)$  and  $S(T, \epsilon_0)$ , we also have  $dist(x, \partial(Z - \overline{B}(V, \epsilon_0))) \leq \epsilon_0$  for all the points  $x \in Z - \overline{B}(V, \epsilon_0)$ . Thus we have  $Int_{\epsilon_0}(Z) = \emptyset$ . The proof of the case where they meet at the point U is similarly handled. On the other hand, suppose that the point T is in the interior of the intersection  $B(U,\epsilon_0) \cap B(V,\epsilon_0)$ . Then the center points U, V are in the open ball  $B(T, \epsilon_0)$  and the sphere  $S(T, \epsilon_0)$  meets the boundary of the union  $\overline{B}(P,\epsilon_0) \cup \overline{B}(Q,\epsilon_0)$  at the four points, say A, B, C and D. Let's call the point on the upper left A, the point on the lower left B, the point on the upper right C and the point on the lower right D. Then, for any point x of the union of the rhombi  $\Diamond APBT$ and  $\Diamond CTDQ$ , we have  $dist(x, \partial(Z)) \leq \epsilon_0$  since the points A, B, C and D are in the boundary of Z. And, for any point x in the union of the four circular sectors  $\circlearrowleft APB$ ,  $\circlearrowright ATC$ ,  $\circlearrowright BTD$  and  $\circlearrowright CQD$ , we also have  $dist(x, \partial(Z)) \leq \epsilon_0$  since all of the circular arcs of these four

circular sectors are parts of the boundary of Z. Therefore, we have  $dist(x,\partial(Z)) \leq \epsilon_0$  for all the points  $x \in Z$ . Consequently, we have  $Int_{\epsilon_0}(Z) = \emptyset$ .

COROLLARY 3.8. Let  $P_1, P_2, P_3$  be three points in  $\mathbb{R}^2$ . Suppose that  $Int_{\epsilon_0} \left[\overline{B}(P_1, \epsilon_0) \cup \overline{B}(P_2, \epsilon_0) \cup \overline{B}(P_3, \epsilon_0)\right] \neq \emptyset.$ 

Then we have

- (1)  $S(P_1, \epsilon_0) \cap S(P_2, \epsilon_0) = \{U_1, V_2\}$  and  $P_3 \notin \overline{B}(U_1, \epsilon_0) \cap \overline{B}(V_2, \epsilon_0)$
- (2)  $S(P_2, \epsilon_0) \cap S(P_3, \epsilon_0) = \{U_2, V_3\}$  and  $P_1 \notin \overline{B}(U_2, \epsilon_0) \cap \overline{B}(V_3, \epsilon_0)$
- (3)  $S(P_3, \epsilon_0) \cap S(P_1, \epsilon_0) = \{U_3, V_1\}$  and  $P_2 \notin \overline{B}(U_3, \epsilon_0) \cap \overline{B}(V_1, \epsilon_0)$ .

*Proof.* (1) From the theorem just above, if  $S(P_1, \epsilon_0) \cap S(P_2, \epsilon_0) = \{U_1, V_2\}$  and  $P_3 \in \overline{B}(U_1, \epsilon_0) \cap \overline{B}(V_2, \epsilon_0)$  then

$$Int_{\epsilon_0}\left[\overline{B}(P_1,\epsilon_0)\cup\overline{B}(P_2,\epsilon_0)\cup\overline{B}(P_3,\epsilon_0)\right]=\emptyset.$$

The proofs of (2) and (3) are quite similar to the proof of (1) and we omit them.  $\Box$ 

THEOREM 3.9. Let P, Q, U, V be the four mutually distinct points in  $\mathbb{R}^2$  such that  $S(P, \epsilon_0) \cap S(Q, \epsilon_0) = \{U, V\}$  with P on the left, Q on the right, U at the top and V at the bottom. If a point  $T \in \mathbb{R}^2$  is an element of the union

$$\left[B(U,\epsilon_0) - \overline{B}(V,\epsilon_0)\right] \cup \left[B(V,\epsilon_0) - \overline{B}(U,\epsilon_0)\right]$$

then  $Z = \overline{B}(P, \epsilon_0) \cup \overline{B}(Q, \epsilon_0) \cup \overline{B}(T, \epsilon_0)$  is  $\epsilon_0$ -thick at some point.

Proof. We need only to prove the case where  $T \in [B(U, \epsilon_0) - \overline{B}(V, \epsilon_0)]$ since the another case is similarly handled. Then we have  $U \in B(T, \epsilon_0)$ and  $V \notin \overline{B}(T, \epsilon_0)$ . And the sphere  $S(T, \epsilon_0)$  meets the boundary of the set  $\overline{B}(P, \epsilon_0) \cup \overline{B}(Q, \epsilon_0)$  at two points, say L on the left, R on the right. Consider the triangle  $\triangle LVR$ . Let's denote by V' the point at which the line segment connecting the midpoint  $\frac{L+R}{2}$  and the vertex V intersects the sphere  $S(T, \epsilon_0)$ . Now if  $\angle LV'R \leq \frac{\pi}{2}$  then the radius of the circumscribed circle of the triangles  $\triangle LV'R$  is  $\epsilon_0$  and  $0 < \angle LVR < \angle LV'R \leq \frac{\pi}{2}$ . Hence if r is the radius of the circumscribed circle of the triangle  $\triangle LVR$  then we have

$$2\epsilon_0 = \frac{\overline{LR}}{\sin(\angle LV'R)} < \frac{\overline{LR}}{\sin(\angle LVR)} = 2r, \text{ i.e., } \epsilon_0 < r.$$

On the other hand, if  $\angle LV'R > \frac{\pi}{2}$  then the point T is positioned higher than the line segment  $\overline{LR}$ . In this case, let C be the image of the reflection of the circle  $S(T, \epsilon_0)$  with respect to the line segment  $\overline{LR}$ . Let's denote by V'' the point at which the line segment connecting the midpoint  $\frac{L+R}{2}$  and the vertex V intersects this circle C. Then the point V'' lies inside the triangle  $\triangle LVR$  and we have  $\angle LV''R \leq \frac{\pi}{2}$ . Hence the radius r of the circumscribed circle of the triangle  $\triangle LVR$  still satisfies the relation  $\epsilon_0 < r$  since the radius of the circumscribed circle of the triangles  $\triangle LV''R$  is  $\epsilon_0$  and  $0 < \angle LVR < \angle LV''R \leq \frac{\pi}{2}$ . Since the three sides  $\overline{LV}$ ,  $\overline{RV}$  and  $\overline{LR}$  of the triangle  $\triangle LVR$  are parts of the closed balls  $\overline{B}(P, \epsilon_0)$ ,  $\overline{B}(Q, \epsilon_0)$  and  $\overline{B}(T, \epsilon_0)$ , respectively, the circumscribed circle and its interior of the triangle  $\triangle LVR$  is a subset of the union Z. Thus Z contains an open ball with radius  $\frac{\epsilon_0+r}{2}$  which implies that  $Int_{\epsilon_0}(Z) \neq$  $\emptyset$ .

THEOREM 3.10. (Three points thickness) Let P, Q be the two distinct points in  $\mathbb{R}^2$  with  $||P - Q|| < 2\epsilon_0$  such that  $S(P, \epsilon_0) \cap S(Q, \epsilon_0) = \{U, V\}$ with P on the left, Q on the right, U at the top and V at the bottom. For a point  $T \in \mathbb{R}^2$ , the union  $Z = \overline{B}(P, \epsilon_0) \cup \overline{B}(Q, \epsilon_0) \cup \overline{B}(T, \epsilon_0)$  is  $\epsilon_0$ -thick at some point of Z if and only if

$$T \in \left\{ B(U,\epsilon_0) - \overline{B}(V,\epsilon_0) \right\} \cup \left\{ B(V,\epsilon_0) - \overline{B}(U,\epsilon_0) \right\}.$$

*Proof.* By means of the theorems 3.7 and 3.9, we need only to prove that if  $T \notin B(U, \epsilon_0) \cup B(V, \epsilon_0)$  then Z is nowhere  $\epsilon_0$ -thick. Suppose that  $T \notin B(U, \epsilon_0) \cup B(V, \epsilon_0)$ . Then we have  $U, V \notin B(T, \epsilon_0)$ . Now there are three cases depending on the relative position of the two points U, Vwith respect to the sphere  $S(T, \epsilon_0)$ .

Case I.  $U, V \notin S(T, \epsilon_0)$ . In this case, the intersection of the sphere  $S(T, \epsilon_0)$  and the boundary of the union  $\overline{B}(P, \epsilon_0) \cup \overline{B}(Q, \epsilon_0)$  is a subset A of  $R^2$  consisting of no point, one point, two points, three points or four points. But all the points of the union  $A \cup \{U, V\}$  are the boundary point of the union Z. Hence we have  $Int_{\epsilon_0}(Z) = \emptyset$ .

Case II. U or  $V \in S(T, \epsilon_0)$  and  $S(T, \epsilon_0) \cap \partial \left[\overline{B}(P, \epsilon_0) \cup \overline{B}(Q, \epsilon_0)\right]$  is consisting of the two elements. In this case, we may assume that this intersection contains the point V since the case where it contains U is similarly handled. Then we have  $||x - V|| \leq 2\epsilon_0$  for all the points  $x \in Z$ . Since V is a boundary point of Z, this implies that  $Int_{\epsilon_0}(Z) = \emptyset$ .

Case III. U or  $V \in S(T, \epsilon_0)$  and  $S(T, \epsilon_0) \cap \partial \left[\overline{B}(P, \epsilon_0) \cup \overline{B}(Q, \epsilon_0)\right]$  is consisting of the three elements. In this case, we may also assume that

Boundary and thickness

the set of the last intersection is  $\{E, V, F\}$  with  $E \in S(T, \epsilon_0) \cap S(P, \epsilon_0)$ . Since the quadrilaterals  $\Box PETV$  and  $\Box QVTF$  are the rhombi, we have  $\overline{PQ} = \overline{EF}$ . Similarly, we have  $\overline{EU} = \overline{TQ}$  and  $\overline{PT} = \overline{UF}$  by using the appropriate rhombi. Thus the triangles  $\triangle UEF$  and  $\triangle PQT$  are congruent. Since  $\overline{PV} = \overline{TV} = \overline{QV} = \epsilon_0$ , the point V is the circumcenter of the triangle  $\triangle PQT$ . Hence the radius of the circumscribed circle of  $\triangle UEF$  is  $\epsilon_0$ . Since all the three points U, E, F are the boundary points of Z, this implies that  $Int_{\epsilon_0}(Z) = \emptyset$ .

#### References

- [1] Buhyeon Kang, An Introduction to  $\epsilon_0$ -Density and  $\epsilon_0$ -Dense Ace, JCMS. **32** (1) (2019).
- Buhyeon Kang, The sequential attainability and attainable ace, Korean J. Math. 26 (4)(2018).
- [3] Yong Chan Kim and Jung Mi Ko, The properties of rough approximations, Korean J. Math. 19 (2)(2011).
- [4] Yong Chan Kim and Jung Mi Ko, L-fuzzy bi-closure systems and L-fuzzy biclosure operators, Korean J. Math. 27 (2) (2019).
- [5] Shyamapada Modak and Ahmad Abdullah Al-omari, Generalized Closed Sets in Binary Ideal Topological Spaces, JCMS. 31 (1) (2018).
- [6] M.Bala Prabhakar, S.Kalesha Vali, and M. Sambasiva Rao, Closed and Dense Elements of BE-algebras, JCMS. 32 (1) (2019).

### **Buhyeon Kang**

Department of Mathematics, Seokyeong University Seoul 02713, Korea *E-mail*: gangage@skuniv.ac.kr