Korean J. Math. 28 (2020), No. 3, pp. 573-585
http://dx.doi.org/10.11568 /kjm.2020.28.3.573

ON THE GENERALIZED BOUNDARY
AND THICKNESS

BunyeoN KANG

ABSTRACT. We introduced the concepts of the generalized accumu-
lation points and the generalized density of a subset of the Euclidean
space in [1] and [2]. Using those concepts, we introduce the concepts
of the generalized closure, the generalized interior, the generalized
exterior and the generalized boundary of a subset and investigate
some properties of these sets. The generalized boundary of a subset
is closely related to the classical boundary. Finally, we also introduce
and study a concept of the thickness of a subset.

1. Introduction

In this section, we introduce a concept of the generalized closure of
a set and study some properties of the generalized dense subset which
we need later. Throughout this paper, ¢g > 0 denotes any, but fixed,
non-negative real number. We denote the open ball, the closed ball and
the sphere with radius € and center at « in the space R™ by B(«a,€) =
{r € R : ||z —a|| < €}, Bla,e) = {x € R™ : ||z — af < €} and
S(a,€) = {x € R™: ||x — af| = €}, respectively.

DEFINITION 1.1. Let S be a subset of R™. A point a € R™ is an
€o—accumulation point of the subset S if and only if B(a,e)N(S—{a}) #
() for all € > ¢y. And a point a € S is an ey—isolated point of S if and
only if B(a,e1) N (S — {a}) = 0 for some positive number €; > €.
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DEFINITION 1.2. For a subset S of R™, we define the ¢y—derived set

of S as the set of all the eg—accumulation points of S and denote it by
ST\,
(e0)

DEFINITION 1.3. Let S be a subset of R™. The ¢y—closure of S is
defined by S(,) = Cle(S) = 5,y U S .

DEFINITION 1.4. Let E be any non-empty and open subset of R™
and €y > 0. And let a subset D of E be given. We define that D is an
eg—dense subset of E' in E if and only if £ C ﬁ(eo). In this case, we say
that D is eg—dense in E.

DEFINITION 1.5. Let E be an open non-empty subset of R™. And let
D be an eg—dense subset of £ in E/. An element a € D is called a point
of the ep—dense ace of D in F if and only if D — {a} is not ey—dense in

E.

LEMMA 1.6. Let E' be an open subset of R™ and D be a non-empty
subset of E. Suppose that E C bUDB(b, €0). Then D is ¢y—dense in E.
S

Proof. See the proof of the lemma 2.10 in [1]. O

LEMMA 1.7. Let D be a non-empty subset of an open subset E of
R™ and D = D/),, UD. Then D is ¢g—dense in F if and only if £ C

@ (0)
UﬁB(b, 60) .
beD

Proof. See the proof of the theorem 2.11 in [1]. O

2. The generalized interior and boundary

In this section, we investigate about the concepts of the ey—interior,
the ep—exterior and the eg—bouundary of subsets in R™ and research
the shapes of these sets. Throughout this section, ¢y > 0 denotes any,
but fixed, non-negative real number unless otherwise stated.

DEFINITION 2.1. Let S be a subset of R™. A point x is called the
egp—interior point of S if and only if there is a positive real number €; > ¢
such that x € B(x,¢;) € S. Let’s denote the set of all the ¢y—interior
points of S in R™ by Int,(S) or 57, ).
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DEFINITION 2.2. Let S be a subset of R™. A point x is called the
eo—boundary point of S if and only if B(x, €;)NS # () and B(z, €;)NSC #
() for each positive real number €; > ¢,. Let’s denote the set of all the
€o—boundary points of S in R™ by Bd,,(S) or J,,S.

DEFINITION 2.3. Let S be a subset of R™. A point zx is called the
€o—exterior point of S if and only if  is an ey—interior point of S¢ =
R™—S. Let’s denote the set of all the eg—exterior points of S in R™ by
Ext.(S).

REMARK 2.4. The union R™ = Int. (S) U Bd,(S) U Ext.,(S) is the
mutually disjoint one, Sf) = 5 and Inte,(S) C Inty(S) = S° for all
€0 Z 0.

LEMMA 2.5. Let S be a subset of R™ and suppose that ¢y > 0. Then

Int.,(S) and Ext.,(S) are open subsets of R™. Hence Bd,,(S) is closed
in R™.

Proof. Let any element x € Int.,(S) be given. Then there is a positive
real number €; > € such that © € B(x,e) € 5. Consider the set

B(z, 3(e1 — €)). For any point y € B(x, (€1 — €)), we have, for any
point z € B(y, € + %(61 — €)),

le =2 <z =yl +lly — =l
1 1
< 5(61—60>+€0+§(61—€0)
< €+ € — € = €.

Hence we have B(y, e + 5(e1 — €)) € B(z,6) € S. Thus we have
y € Int.,(S) since ¢ + %(61 — €y) > €p. Therefore, we have

v € Bz, %(61 ) C Int.,(S).

This implies that Int.,(S) is open. And Ext.(S) is also open since it
is the ep-interior of S¢. Since R™ = Int.(S) U Bd,,(S) U Ext.(S) is
the disjoint union, Bd,(S) = R™ — {Int.,(S) U Ext,(S5)} is closed in
R™. O

LEMMA 2.6. Let S be a subset of R™ and suppose that ¢y > 0. Then
we have SEEO) C Int,(S) U Bd,(95).

Proof. Let any element x € SEEO) be given. Since R™ = Int.(S) U
Bd.,(S) U Ext.(S) is a disjoint union, we need only to show that = ¢
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Ext. (S). To the contrary, assume that x € Euzt. (S). Then there is
€1 > €o such that x € B(x,¢;) C S¢. Hence B(x,e;) NS = 0. This is a
contradiction since x € S(,eo)' O

THEOREM 2.7. Let S be a subset of R™ and suppose that ¢y > 0.
Then S = Inte,(S) U Bd,(5).

Proof. Since R™ = Int.,(S)UBd,(S)U Ext,(S) is the disjoint union
and S is disjoint from Ext.,(S), we have S C Int.,(S)UBd,,(S). Hence,
by lemma 2.6, we have

Sy = SU sgeo) C Int,(S) U Bd,,(9S).

In order to prove the equality, let any element x € Int.(S) U Bd,,(S)
be given. If x € S then we are done. Suppose that x ¢ S. Then
x ¢ Int.,(S). Thus we have z € Bd,,(S). Hence we have

Ve, > €0, B(x,61) NS # 0 and B(z,e;) NSY # 0.
Thus we have Jy., € S s.t. y., € B(z,€1). Since y,, # x, we have
Ver > €y, Ye, € B(z,e1) N (S — {z}) # 0.
This implies that x € SEEO) which completes the proof. O]

COROLLARY 2.8. Let S be a subset of R™ and suppose that ¢y > 0.
Then

Steo) = {530

Proof. Since R™ = Int,(S)UBd.,(S)U Exte,(S) is the disjoint union
and S() = Inte,(S) U Bd,(S), the union of the equation R™ = S,y U
Ext.,(S) is the disjoint one. Hence we have {S()}¢ = Ext,(S) =
{SC}E’GO). Thus we have S(.,) = [{SC}‘(’GO)]C.

U

THEOREM 2.9. Let S be a subset of R™ and suppose that ¢y > 0.
Then R™ — (R™ — 5),,,) = Into,(S), Le., [S7].,, = Int,(S).

Proof. By the definition of the ey—closure of the set S¢, we have

(5 () = [SC]’(GO) U SY. Hence we have R™ — (S () = {[SC]’(EO)}C ns.
Thus we need only to show that Int.(S) = {[SC]/(EO)}C N S. Let any
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element x € Int,(S) be given. Then we have
Jde; > €p s.t. 2 € B(z,69) C S
= Br,e)NS“=0andzc S
= z¢[S,, andz €S
= z {5, NS
Conversely, let any element x € {[SC]’(GO)}C NS be given. Since x € S is
not a member of [SC]’(Q]), we have

Je1 > €p .t Bw,e) N (SY — {x}) = 0.

Since z € S and SY—{x} = S, we also have B(x,¢;)NSY = (). Thus we
have z € B(x,€¢;) C S. Therefore, we have x € Int. (S) which completes
the proof. n

THEOREM 2.10. (Representation) Let S be a subset of R™ and sup-
pose that ey > 0. Then we have

Bd.,(S) = xELéSE(x, €0)-

Moreover, if ¢g > 0 then 0S is an eg—dense subset of the interior of the
subset Bd,,(S5).

Proof. Let x € 9S and any element y € B(z,¢) be given. For each
positive real number € > ¢, we have z € B(y,€). Hence x € B(x,e —
€0) € B(y,€). Since z € 05,

B(x,e —e) NS #Dand Bz, e—e)NSY # 0.
Thus we have
B(y,e)NS #0 and B(y,e)NSY #£0.
Hence we have y € Bd,,(S). Thus we have B(x,¢) C Bd,,(S) for all
elements x € 05. Therefore, we have :EEL(J')SB (x,€0) C Bd,(S). Conversely,

let any element y € Bd,,(S) be given. For each natural number n, we
have

1 1
B(y,eo—l—g)ﬂS;é(Z)and B(y,eo—I—ﬁ)ﬂSC#@

Hence there are two sequences {wy,}, {z,} in R™ such that {w,} C S,
{z,} C S and w,, 2, € By, + %) for each natural number n. Since
they are bounded, we may assume by using their subsequences that

limw,, = wy and lim z, = 7, for some elements wy € S and 2z, € SC.
n—0o0 n—oo
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Note that 95 = 9S¢. If wy, € 05 or z; € OS then we are done since
y € B(wy, €) with wy € 9S or y € B(z, €o) with z, € S. Now suppose
that wy ¢ 0S and zy ¢ 0S. Then we must have wy € Int(S) and
2o € Ext(S). Now consider the line segment wgyz joining the points wy
and z5. We have wozg N 9S # 0 since wyz is connected. Choosing an
element zo € Wozo N OS, we have xy = tywy + (1 — o)z for some real
number 0 < t5 < 1. Thus we have

ly = zoll = lltoy + (1 = to)y — {towo + (1 = to)z0}|
< tolly — woll + (1 —to)[ly — 2ol
< toeo + (1 —tp)eg = €o.
Hence y € B(zg,¢) C xe%sF(x’Go)' Moreover, if €, > 0 then S is a

subset of the interior of Bd,,(S). Thus 05 is an ey—dense subset of the
interior of the subset Bd,,(S) by the lemma 1.6. O

THEOREM 2.11. (Core) Let S be a subset of R™ and suppose that
€p > 0. Then

Int,(S)=95— xééSB(:c, €0)-
Proof. By the theorem just above, we need only to show that Int.,(.S)
= S — Bd,(S). Let any element z € S — Bd,,(S) be given. Then z € S
and x ¢ Bd(S). Since R™ = Int.,(S) U Bd(S) U Ext.(S) is the
disjoint union, we must have x € Int,(S). Conversely, let any element
x € Int.,(S) be given. Then we clearly have x € S, © ¢ Ext.(S) and
x ¢ Bd(S). Thus we have x € S — Bd,,(S). O

LEMMA 2.12. A subset F' of R™ is the boundary of some open subset
in R™ if and only if F' is closed and nowhere dense.

Proof. First, suppose that I’ is the boundary of some open subset S
in R™. Then it is clear that F' is closed. Since the interior S of the set
S is disjoint from the boundary F of S, we have SN F = (). If some
point x € F'is an interior point of F' then there is a positive real number
€1 > 0 such that = € B(x,e) C F. Since SN F = (), this implies that
B(z,e1) NS = 0. Thus we have z € B(z,¢;) € S¢. This implies that
x € Ext(S). This is a contradiction since the boundary is disjoint from
the exterior. This contradiction implies that F' is nowhere dense. Now
suppose that F' is closed and nowhere dense. Take S = F¢. Then S is
an open subset of R™. We need only to prove that F = 9F¢. First, we
have OF¢ N FC¢ = () since F¢ is open. Hence we have OF¢ C F. Next,
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let any element = € F be given. Then B(x, €) N F#£() for all positive real
number € > 0 since this intersection contains the element x. Moreover,
the open ball B(z, €) cannot be a subset of F for all positive real number
¢ > 0 since F' is nowhere dense. Thus we also have B(z,¢) N FE#£() for
all positive real number ¢ > 0. Hence we have z € OF“ = 9S. Thus

F=05S. O
COROLLARY 2.13. Let S be any subset of R™. Then {95}° = (.

Proof. Let S be any subset of R™. Since 5% is open, 85 is nowhere
dense by the lemma just above. But we have 95 = 85 Hence we have
{05}° = {85 }° = 0. O

THEOREM 2.14. Let F' be a non-empty subset of R™ and ¢; > 0.

Then F' is the eg—boundary of some open subset of R™ if and only if

F = USE(JC, €o) for some closed and nowhere dense subset S of R™.
xe

Proof. First, suppose that F'is the eg—boundary of some open subset
G of R™. Then the boundary S = 0G of G is closed and nowhere dense

subset of R™ by the lemma just above. Moreover, we have
F =Bd,(G) = xe%GB(:L', €0)

by the theorem 2.10. Hence we have F' = USE(x, €0). Conversely, sup-
xe

pose that F' = USF(x,eo) for some closed and nowhere dense subset

Te
S of R™. Then S is the boundary dG of some open subset G of R™
by the lemma just above. The e¢y—boundary of this open subset G is
given by Bd(G) = %GB(x,eo) by the theorem 2.10. Thus F' is the
xe

ep—boundary of the open subset G. [

LEMMA 2.15. Let S, T be any subsets of R™ and suppose that ¢y > 0.
Then

(1) Int,(SNT) = Int.,(S) N Int,(T).

(2) Ext,(SUT) = Ext. (S) N Exte,(T).

Proof. (1) Since SNT is a subset of S and 7', we have Int.,(SNT) C
Int. (S)NInte,(T). Conversely, if x € Int.,(S)NInt,(T) is any element
then we have

dey > €9 s.t. x € Bz, ) C S
and
Jdey > €p s.t. x € B(x,e0) CT.
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Hence we have the statement
Jdes = min{er, 2} > €9 s.t. x € B(x,e3) CSNT
which implies that x € Int.,(SNT). (2) By (1), we have
Int,(S° NTC) = Int.,(S°) N Int.,(T°).

Since Int,(S¢) = Ext.(S), we have the desired result Ext.,(SUT) =
Ezxt. (S) N Ext, (T). O

Note that Int. (S) U Int.,(T) C Int.,(SUT) in general.

THEOREM 2.16. Let S, T be any subsets of R™ and suppose that
€0 > 0. Then Cl.,(SUT) = Cl.,(S)UCl,(T).

Proof. By the corollary 2.8 and the lemma 2.15, we have
(SUT), = HSUT)Y"
= [{(S“NT)},°
= {(S)0) N (T}
= {5} U{(T) )
= Sy UT ()
which completes the proof. O

3. Thickness

By the corollary 2.13, we have {9S}° = ) for all subsets of R™. But
the similar relation {850§}‘()€0) = () is not true in general if ¢y # 0. For
if S = {A, B,C} is the vertices of the equilateral triangle in R?, then
we have 4+5+¢ ¢ {8605}‘()60) with ¢y = ||A — BJ|. This leads us to the
following concept of the thickness.

DEFINITION 3.1. Let S be a non-empty subset of R™ and ¢, > 0.
Then S is said to be eg—thick at a point p € S if and only if p € Int.,(S5)
. In this case, we call that p is an e¢y—thick point or spot of S.

Note that Int.,(S) is the set of all the ey—thick points of S. We call
the closure Int.,(S) the eg—core of S. In according to the theorem 2.11,
the eg—core of S is the closure of the set Int.,(S) =S — IE%SE(L €0)-

Note also that if S is eg—thick at a point p € S then S is e—thick at
a point p € S for all 0 < € < ¢€; for some €; with €y < €.
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DEFINITION 3.2. Let S be a non-empty subset of R™ and ¢, > 0.
Then S is said to be not ey—thick anywhere or nowhere ¢y—thick if and

only if Int.,(S) = 0.

THEOREM 3.3. Let S be any subsets of R™ and suppose that ¢y > 0.
If Bd.,(S) is nowhere ey—thick then Bd(S) is closed and nowhere dense,
but not conversely.

Proof. The boundary Bd(S) is clearly closed in R™. Suppose that
Bd(S) is not nowhere dense. Then Int(Bd(S)) # (). Hence there is a
point zq € Bd(S) such that B(zg,e;) C Bd(S) for some positive real
number ¢; > 0. Then we have

€1
To € B(l’o, € + 5) - xeé{i(s)B(l‘,Eo) = BdEO(S).
Thus we have zg € Int,(Bd,(S)). Hence Bd,,(S) is eg—thick at zq. In
order to show that the converse is not true in general, choose the open
set S = B(0, ¢y) with €9 > 0. Then we have Bd(S) = {x € R™|||jz—0]| =
€0} = S(0, €p). The sphere S(0, ¢p) is closed and nowhere dense. But we
have

3 —
b — '
0 € B(0, 260) C IEE%(Ji(S)B(x, €) = Bd,(S5)

Hence Bd,,(S) is ¢p—thick at the origin 0. O

Let u be any non-zero vector in R™. Let’s denote the orthogonal space
by ut = {z € R™: z-u = 0}. Recall that the projection of a vector
r € R™ along the vector u is given by proj,(r) = “Zu. Let’s denote the
parallel projection from R™ to u™ by [y1)(z) = 2 — proju(x).

THEOREM 3.4. Let S be any subsets of R™ and suppose that ¢y > 0.
If S is eg—thick at a point p € S in R™ then for any non-zero vector
u € R™ the set 11, 1)(S) = {Il(,1)(x) : © € S} is ep—thick at the point
I,1y(p) in the m — 1 dimensional space I1,1y(R™), but not conversely.
Proof. Suppose that S is eg—thick at a point p € S in R™ and let

u be any non-zero vector in R™. Then there is a positive real number
€1 > €o such that p € B(p,€;) C S. Hence we have

1y (p) € Uty (B(p, 1)) € My (S).

This completes the proof of the first part since II,1)(B(p, €1)) is an open
ball in II(,.)(R™) with the same radius ;. Now let {A, B,C} be the
vertices of the equilateral triangle in R? with ||A — B|| = 2¢. Then the
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set S = B(A,e9) UB(B,ey) UB(C,¢€) is not eg—thick at any point. But
the set I, 1(S) is obviously eg—thick at some point for any direction u
in R " m
in R™.

LEMMA 3.5. Let ¢g > 0 be given. If P,(Q € R? are distinct points
with ||P — Q|| < 2e, then there are two points U,V € R? such that
IU=P|=IU-Ql=ec=[V-Pl|=[V-2l

Proof. We clearly have S(P,ey) N S(Q,e) = {U,V}. O

REMARK 3.6. It is obvious that Int,, [E(P, €0) UE(Q,EQ)] = () for
any two points P, Q in R2.

THEOREM 3.7. Let P,Q,U,V € R? be the four points in the above
lemma with P on the left, () on the right, U at the top and V' at the
bottom. If a point T € R? is an element of the intersection B(U, €y) N

B(V, €y) then we have
[nteo F(P7 60) U E(Qa 60) U E(Ta 60)] = 0.

Proof. Put Z = B(P,e) U B(Q,e) U B(T, ). If T is a bound-
ary point of the intersection B(U, ) N B(V, ) then the three spheres
S(T,€y),S(P, ) and S(Q, €9) meet at the point U or V. Suppose that
they meet at the point V. Then for any point x € B(V,¢) we have
|lx — V|| < €. Since V is a boundary point of the union Z, this
implies that any point z in the set B(V,¢y) N Z is not an e;—interior
point of Z. Since the sphere S(V,¢y) passes through the center points
P,Q, T of the three spheres S(P, ¢), S(Q, o) and S(T,¢g), we also have
dist(x,0(Z —B(V,€))) < € for all the points z € Z— B(V, ¢). Thus we
have Int.,(Z) = (). The proof of the case where they meet at the point
U is similarly handled. On the other hand, suppose that the point 7" is
in the interior of the intersection B(U,¢y) N B(V,¢y). Then the center
points U,V are in the open ball B(T ¢y) and the sphere S(T',€) meets
the boundary of the union B(P,¢)) U B(Q, ) at the four points, say
A, B,C and D. Let’s call the point on the upper left A, the point on
the lower left B, the point on the upper right C' and the point on the
lower right D. Then, for any point x of the union of the rhombi 0 APBT
and OCTDQ, we have dist(z,0(Z)) < ¢ since the points A, B, C' and
D are in the boundary of Z. And, for any point x in the union of
the four circular sectors O APB, O ATC, © BTD and O CQD, we
also have dist(z,0(Z)) < ¢ since all of the circular arcs of these four
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circular sectors are parts of the boundary of Z. Therefore, we have
dist(x,0(Z)) < €y for all the points © € Z. Consequently, we have
Int,(Z) = 0. m

COROLLARY 3.8. Let Py, P,, P be three points in R?. Suppose that
I?’LtEO @(Pl, EQ) U E(PQ, 60) UE(Pg, 60)} 7é @

Then we have

(1) S(P,e0)NS(Py, o) ={U,Vao} and P3¢ B(Uy,e) N B(Va, &)
(2) S(Py,e0) NS(Ps,60) = {Us,V3} and P, ¢ B(Uy,e0) N B(Va, €)
(3) S(Ps,e0) NS(Pr,e0) = {Us,Vi} and Py ¢ B(Us,e0) N B(Vi, ).
Proof. (1) From the theorem just above, if S(Py,€e) N S(P2,€) =

{U,,V,} and Py € B(Uy,€) N B(Va, €) then
InteO [E(Pl, 60) U E(PQ, 60) UE(P;;, 60)} == @

The proofs of (2) and (3) are quite similar to the proof of (1) and we
omit them. O

THEOREM 3.9. Let P,Q,U,V be the four mutually distinct points in
R? such that S(P,ey) N S(Q,e) = {U,V} with P on the left, Q on the
right, U at the top and V' at the bottom. If a point T € R? is an element
of the union

[B(U,e0) — B(V,€0)] U [B(V,e0) — B(U, )]
then Z = B(P,ey) U B(Q, ¢y) U B(T, €y) is ey—thick at some point.

Proof. We need only to prove the case where T € [B(U, &) — B(V, )]
since the another case is similarly handled. Then we have U € B(T, ¢)
and V ¢ B(T, ). And the sphere S(T, ¢5) meets the boundary of the set
B(P, ) UB(Q, &) at two points, say L on the left, R on the right. Con-
sider the triangle ALV R. Let’s denote by V'’ the point at which the line
segment connecting the midpoint # and the vertex V intersects the
sphere S(T', €y). Now if ZLV'R < 7 then the radius of the circumscribed
circle of the triangles ALV'Ris ey and 0 < ZLVR < ZLV'R < 7. Hence
if 7 is the radius of the circumscribed circle of the triangle ALV R then
we have

) LR LR
= SGn(ZLV'R) ~ sin(ZLVR)

=2r, i.e., € <T.
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On the other hand, if ZLV'R > 7 then the point T is positioned higher
than the line segment LR. In this case, let C be the image of the
reflection of the circle S(T, ) with respect to the line segment LR.
Let’s denote by V" the point at which the line segment connecting the
midpoint # and the vertex V intersects this circle C. Then the point
V" lies inside the triangle ALV R and we have ZLV"R < 7. Hence the
radius r of the circumscribed circle of the triangle ALV R still satisfies
the relation ¢y < r since the radius of the circumscribed circle of the
triangles ALV"R is ¢y and 0 < ZLVR < ZLV"R < 7. Since the three
sides LV, RV and LR of the triangle ALV R are parts of the closed balls
B(P, ), B(Q,c) and B(T,¢), respectively, the circumscribed circle
and its interior of the triangle ALV R is a subset of the union Z. Thus
Z contains an open ball with radius ©* which implies that I'nt.,(Z) #

0. O

THEOREM 3.10. (Three points thickness) Let P, Q be the two distinct
points in R? with ||P — Q|| < 2¢ such that S(P,¢) NS(Q, ) = {U,V}
with P on the left, () on the right, U at the top and V at the bottom.
For a point T € R?, the union Z = B(P,¢) U B(Q, ) U B(T, ) is
eo—thick at some point of Z if and only if

T € {B(U,e0) — B(V,e0)} U{B(V,e0) — B(U,€0)} -

Proof. By means of the theorems 3.7 and 3.9, we need only to prove
that if T' ¢ B(U,¢) U B(V,€) then Z is nowhere ey—thick. Suppose
that T'¢ B(U,€ey) U B(V, €). Then we have U,V ¢ B(T, ¢y). Now there
are three cases depending on the relative position of the two points U, V
with respect to the sphere S(T, €).

Case I. U,V ¢ S(T,¢€y). In this case, the intersection of the sphere
S(T, €y) and the boundary of the union B(P,¢y) U B(Q, ¢) is a subset
A of R? consisting of no point, one point, two points, three points or
four points. But all the points of the union AU{U, V'} are the boundary
point of the union Z. Hence we have Int. (Z) = 0.

Case IL U or V € S(T, &) and S(T',e) N9 [B(P,e0) UB(Q,€0)] is
consisting of the two elements. In this case, we may assume that this
intersection contains the point V' since the case where it contains U is
similarly handled. Then we have ||z — V|| < 2¢, for all the points = € Z.
Since V' is a boundary point of Z, this implies that Int.,(Z) = 0.

Case IIL. U or V € S(T, ) and S(T, &) N0 [B(P, &) U B(Q, €)] is
consisting of the three elements. In this case, we may also assume that
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the set of the last intersection is {E,V, F'} with E € S(T,¢)) NS(P, €).
Since the quadrilaterals JPETV and OQVTF are the rhombi, we have
PQ = EF. Similarly, we have EU = T(Q and PT = UF by using
the appropriate rhombi. Thus the triangles AUEF and APQT are
congruent. Since PV =TV = QV = ¢, the point V is the circumcenter
of the triangle APQT. Hence the radius of the circumscribed circle of
AUFEF is €. Since all the three points U, F/, F' are the boundary points
of Z, this implies that Int. (Z) = 0. O
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