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ENHANCING EIGENVALUE APPROXIMATION WITH

BANK–WEISER ERROR ESTIMATORS

Kwang-Yeon Kim

Abstract. In this paper we propose a way of enhancing eigenvalue
approximations with the Bank–Weiser error estimators for the P1
and P2 conforming finite element methods of the Laplace eigen-
value problem. It is shown that we can achieve two extra orders
of convergence than those of the original eigenvalue approximations
when the corresponding eigenfunctions are smooth and the underly-
ing triangulations are strongly regular. Some numerical results are
presented to demonstrate the accuracy of the enhanced eigenvalue
approximations.

1. Introduction

We consider the Laplace eigenvalue problem

(1)

{
−∆u = λu in Ω

u = 0 on ∂Ω

which describes a transverse vibration of a membrane over a polygonal
domain Ω in R

2 with its boundary ∂Ω. The variational formulation of
this problem is to find (u, λ) ∈ H1

0 (Ω)× R such that b(u, u) = 1 and

(2) a(u, v) = λb(u, v) ∀v ∈ H1
0 (Ω),
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where

a(u, v) = (∇u,∇v)Ω, b(u, v) = (u, v)Ω,

and (u, v)S denotes the standard L2 inner product over S. It is well
known that there exist positive eigenvalues 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·
with lim

j→∞
λj = ∞ and corresponding eigenfunctions u1, u2, u3, · · · such

that b(ui, uj) = 0 for i 6= j. The eigenfunctions of (2) corresponding to
a particular eigenvalue λ form a finite-dimensional vector space which
will be denoted by

M(λ) = {u ∈ H1
0(Ω) : a(u, v) = λb(u, v) ∀v ∈ H1

0 (Ω)}.

As discussed in [2, 3, 6, 14], a priori error analysis for finite element
methods of the problem (2) is much more complicated than that for the
source problem −∆u = f . It is rather straightforward to extend the
error estimators for the source problem to the eigenvalue problem by
replacing f with the discrete function λhuh, which results in the extra
higher order term ‖λu−λhuh‖0,Ω in the reliability of the error estimator.
We refer to [7, 14] for the residual-based error estimator and [18, 20] for
the error estimator by gradient recovery.

There have been various ways to improve the accuracy of eigenfunc-
tion and/or eigenvalue approximations of (2). In [17,18] the error estima-
tor by gradient recovery was utilized to increase the order of convergence
in eigenvalue approximations for the P1 conforming FEM. The two-space
method proposed in [19] involves a global postprocessing using a higher
order finite element. In [9] the authors considered combining the method
of [18] or [19] with the two-grid method [22]. Another well-known tech-
niques are the Richardson extrapolation based on asymptotic error ex-
pansion of eigenvalue approximations [1] and combination of lower and
upper bounds for the eigenvalues [10].

In this paper we aim to enhance the eigenvalue approximations of (2)
computed by the P1 and P2 conforming FEMs. We basically follow
the approach of [17] which recovers the eigenfunction value and then
employs the Rayleigh quotient. To this end, the Bank–Weiser error
estimator proposed in [4, 13] for the source problem is extended to the
eigenvalue problem (2). This error estimator is computed by solving local
Neumann problems using higher-order correction spaces and can yield
asymptotically exact estimates of the eigenfunction error under proper
conditions on the regularity of the eigenfunctions and the structure of the
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underlying triangulations. This enables us to recover higher order H1
0 -

conforming approximations of the eigenfunctions which is then used to
enhance the eigenvalue approximation via the Rayleigh quotient. Our
approach is similar in spirit to the two-space method of [19] in that
both uses higher order approximation spaces. But the two-space method
solves a global problem and works even for unstructured triangulations,
while our method is local in nature and requires the triangulations to
be mildly structured in order to achieve a higher order of convergence
as in [17].

The rest of the paper is organized as follows. In Section 2 we introduce
the finite element methods for the eigenvalue problem and derive some
superconvergence result. In Section 3 the Bank–Weiser error estimator
is presented for the P1 and P2 conforming FEMs and its asymptotic
exactness is established under some conditions. This error estimator is
then used to enhance the eigenvalue approximation in Section 4. Finally,
in Section 5, some numerical results are provided to demonstrate the
accuracy of the enhanced eigenvalue approximations.

2. Finite Element Method

Let Th be a regular triangulation of Ω and let EΩ
h be the collection of

all interior edges of Th. We denote the diameter of a triangle T ∈ Th by
hT , the unit outward normal vector to ∂T by nT , and the length of an
edge e ∈ EΩ

h by he. The mesh size of Th is defined as h = maxT∈Th hT .
For an interior edge e = ∂T ∩ ∂T ′, we define the jump of a function

v across e as

[[v]] = v|T − v|T ′

(the sign of [[v]] does not matter) and the jump and mean value of the
normal derivative of v across e as
[[
∂v

∂n

]]
= ∇v|T ·nT +∇v|T ′ ·nT ′,

〈
∂v

∂nT

〉
=

1

2
(∇v|T +∇v|T ′) ·nT .

Let Pk(T ) be the space of all polynomials of degree up to k on T and
let Nk(T ) be the set of standard Lagrange nodes of Pk(T ). The subspace
of Pk+1(T ) defined by

P
0
k+1(T ) = {v ∈ Pk+1(T ) : v(x) = 0 ∀x ∈ Nk(T )}
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acts as a (k+1)th-order correction space for Pk(T ), i.e., we have Pk+1(T )
= Pk(T )⊕ P

0
k+1(T ). The usual scaling argument gives the estimates

(3) ‖v‖0,T + h
1/2
T ‖v‖0,∂T ≤ ChT‖∇v‖0,T ∀v ∈ P

0
k+1(T )

with some constant C > 0 independent of the mesh size h.
Let V k

h ⊂ H1
0 (Ω) be the standard conforming finite element space

of degree k ≥ 1 over Th. The finite element discretization of (2) seeks
(uh, λh) ∈ V k

h × R such that b(uh, uh) = 1 and

(4) a(uh, vh) = λhb(uh, vh) ∀v ∈ V k
h .

The following a priori error estimates can be found, for example, in
[2, 3, 6]: if M(λ) ⊂ H t+1(Ω) and h is sufficiently small, then for each
discrete eigenpair (uh, λh) of (4), there exists an eigenpair (u, λ) of (2)
such that
(5)
|λ−λh| ≤ Ch2s, ‖∇(u−uh)‖0,Ω ≤ Chs, ‖u−uh‖0,Ω ≤ C‖u−Phu‖0,Ω,

where s = min(t, k) and Phu ∈ V k
h is the elliptic projection of u defined

by

a(Phu, vh) = a(u, vh) ∀vh ∈ V k
h .

If Ω is (1+r)-regular for some 0 < r ≤ 1, then one can apply the duality
argument to obtain

‖u− Phu‖0,Ω ≤ Chr‖∇(u− Phu)‖0,Ω ≤ Chs+r,

which gives by (5)

(6) ‖u− uh‖0,Ω ≤ Chs+r.

The constants C > 0 in (5)–(6) depend on λ. Moreover, the eigenfunc-
tion u = u(h) satisfying (5) may depend on h but its Sobolev norms
are bounded uniformly in h due to the normalization b(uh, uh) = 1 and
finite dimensionality of the eigenspace M(λ).

Throughout the rest of the paper we will use the notation a . b (resp.
a & b) to mean the inequality a ≤ Cb (resp. a ≥ Cb) with some constant
C > 0 possibly depending on u and λ but independent of the mesh size
h.

Before closing this section, we extend the superconvergence results of
[5,11,21] for the source problem to the eigenvalue problem. For this sake
it is assumed that M(λ) ⊂ Hk+2(Ω)∩W k+1,∞(Ω) and the triangulation
Th is mildly structured in the following sense: (cf. [5, 21])
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Condition (α, σ): There exists a subset T1,h ⊂ Th and some positive
constants α, σ such that

• every pair of adjacent triangles T, T ′ ∈ T1,h form an O(h1+α
T ) ap-

proximate parallelogram, which means that the lengths of two op-
posite edges of T ∪ T ′ differ only by O(h1+α

T ).
•
∑

T∈Th\T1,h
|T | . hσ, where |T | denotes the area of T .

The well-known three-line triangulations whose edges are parallel to
three fixed directions (like the one shown in Figure 1 of Section 5) satisfy
the condition (α, σ) with the best values α = σ = ∞. It is also known
that a sequence of triangulations generated from an arbitrary initial tri-
angulation by dividing every triangle into four congruent subtriangles
satisfy the condition (α, σ) with α = 2 and σ = 1.

Let (u, λ) and (uh, λh) be solutions of (2) and (4), respectively, which
satisfy the estimates (5), and let uI ∈ V k

h denote the standard Lagrange
interpolation of u. The superconvergence result of the source problem
proved in [5, 11, 21] for k = 1, 2 asserts that

(7) ‖∇(uI − Phu)‖0,Ω . hk+ρ(‖u‖k+2,Ω + |u|k+1,∞,Ω)

with ρ = min(α, σ/2, 1). From the equality

a(Phu− uh, vh) = a(u− uh, vh) = b(λu− λhuh, vh) ∀vh ∈ V k
h ,

it follows that

(8) ‖∇(Phu− uh)‖0,Ω . ‖λu− λhuh‖0,Ω ≤ λ‖u− uh‖0,Ω + |λ− λh|.

The first term could be bounded by (6) (which is valid without the
condition (α, σ)) but this yields the convergence rate O(hk+r) which
may be worse than O(hk+ρ) due to the geometry of Ω. Instead we follow
the proof of [20, Theorem 3.1] to obtain by (5)

λ‖u− uh‖0,Ω + |λ− λh| . ‖u− Phu‖0,Ω + |λ− λh|

≤ ‖u− uI‖0,Ω + ‖uI − Phu‖0,Ω + |λ− λh|

. hk+1|u|k+1,Ω + ‖∇(uI − Phu)‖0,Ω.(9)

Combining (7)–(9) leads to the following superconvergence result for the
eigenvalue problem

(10) ‖∇(uI − uh)‖0,Ω . hk+ρ(‖u‖k+2,Ω + |u|k+1,∞,Ω).
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3. Bank–Weiser Error Estimator

From now on the degree of the finite element space V k
h is fixed at

k = 1, 2 as in [4, 13]. The following a posteriori error estimator of the
Bank–Weiser type is a straightforward extension of the ones proposed
in [4, 13] to the eigenvalue problem (2).

Definition 1. For every T ∈ Th, find εh|T ∈ P
0
k+1(T ) such that

εh|∂T∩∂Ω = 0 and

(11) (∇εh,∇v)T = (∆uh + λhuh, v)T −
1

2

∫

∂T

[[
∂uh

∂nT

]]
v ds

for all v ∈ P
0
k+1(T ) with v|∂T∩∂Ω = 0. The Bank–Weiser error estimator

is then defined as

(12) η = ‖∇hεh‖0,Ω,

where (∇hw)|T = ∇(w|T ) for T ∈ Th.

Remark 1. The imposition of the Dirichlet boundary condition εh|∂T∩∂Ω

= 0 will lead to the improved estimates with ρ = min(α, σ/2, 1) in subse-
quent results. Otherwise we would have ρ = min(α, σ/2, 1/2) as in [13].

Remark 2. By taking v = εT in (11) and applying (3), it is easy to
see that

‖∇εh‖0,T . hT‖∆uh + λhuh‖0,T + h
1/2
T

∥∥∥∥
[[
∂uh

∂nT

]]∥∥∥∥
0,∂T\∂Ω

.

Then the local lower bound for standard residuals (cf. [7]) yields

‖∇εh‖0,T . ‖∇(u− uh)‖0,ωT
+ hT‖λu− λhuh‖0,ωT

,

where ωT is the union of triangles that share an edge with T . It is difficult
to prove a global upper bound of η and we may need the saturation
assumption as was done in [4] for the P1 FEM of the source problem.

Next we turn to the proof of asymptotic exactness of the Bank–Weiser
error estimator which will be used in the next section to enhance a given
eigenpair approximation (uh, λh) of (4). The argument is almost the
same as those of [8,13] for the source problem and exploits an auxiliary
function qw|T ∈ P

0
k+1(T ) with qw|∂T∩∂Ω = 0 which is the solution of

(13) (∇qw,∇v)T = −(∆w, v)T +

∫

∂T

〈
∂wI

∂nT

〉
v ds− (∇wI ,∇v)T
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for all v ∈ P
0
k+1(T ) with v|∂T∩∂Ω = 0, where w is a given function in

H2(Ω).
The following estimate for ‖∇(u − uI − qu)‖0,T was derived in [13,

Lemma 4.1] for T ∈ T1,h having no boundary edges and k = 2. Thanks
to the Dirichlet boundary condition qu|∂T∩∂Ω = 0, the same result is
valid even when T has boundary edges.

Lemma 1. Let T ∈ Th be such that ωT ⊂
⋃

T∈T1,h
T . If u ∈ Hk+2(ωT )

and u = 0 on ∂T ∩ ∂Ω, then we have

‖∇(u− uI − qu)‖0,T . h
k+min(α,1)
T ‖u‖k+2,ωT

.

Proof. The proof is essentially the same as that of [13, Lemma 4.1],
so we briefly describe some modifications due to consideration of the
Dirichlet boundary condition qu|∂T∩∂Ω = 0.

As was done for the inequality (11) of [13], it follows from (13) that
for all w ∈ Hk+1(ωT ),

(14) ‖∇(w−wI−qw)‖0,T ≤ ‖∇(w−wI)‖0,T +‖∇qw‖0,T . hk
T |w|k+1,ωT

.

Next we verify that if φ ∈ Pk+1(ωT ) and φ = 0 on ∂T ∩ ∂Ω, then

(15) ‖∇(φ− φI − qφ)‖0,T . hk+α
T |φ|k+1,ωT

.

Write the equation (13) as

(∇(φ− φI − qφ),∇v)T =
∑

e⊂∂T\∂Ω

∫

e

(
∂φ

∂nT
−

〈
∂φI

∂nT

〉)
v ds.

For k = 2 it was shown in the proof of [13, Lemma 4.1] that
∣∣∣∣
∫

e

(
∂φ

∂nT
−

〈
∂φI

∂nT

〉)
v ds

∣∣∣∣ . hk+α
T |φ|k+1,ωT

‖∇v‖0,T

for v ∈ P
0
k+1(T ) with v|∂T∩∂Ω = 0. For k = 1 we can use [16, Lemma

7.1] to get the same result. Then the estimate (15) is obtained by taking
v = φ − φI − qφ (which is possible because φ − φI ∈ P

0
k+1(T ) and

φ = φI = 0 on ∂T ∩ ∂Ω).
Now choose φ ∈ Pk+1(T ) to be the (k+1)th-order standard Lagrange

interpolation of u on T which is extended in a natural way to ωT . Note
that φ = 0 on ∂T ∩ ∂Ω (as u does) and |u− φ|k+1,ωT

. hT |u|k+2,ωT
. The

rest of the proof is based on (14) and (15); see the proof of [13, Lemma
4.1].
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Now we are ready to prove the main results of this section. The
following two theorems correspond to [13, Theorems 4.2–4.3] and thus
can be proved in a similar way.

Theorem 1. Assume that Th satisfies the condition (α, σ) andM(λ) ⊂
Hk+2(Ω) ∩W k+1,∞(Ω). Let (u, λ) ∈ H1

0 (Ω) × R and (uh, λh) ∈ V k
h × R

be solutions of (2) and (4) for k = 1, 2, respectively, which satisfy the
estimates (5). Then we have with ρ = min(α, σ/2, 1)

‖∇h(u− uh − εh)‖0,Ω . hk+ρ(‖u‖k+2,Ω + |u|k+1,∞,Ω).

Proof. We begin by splitting u− uh − εh into three terms

u− uh − εh = (u− uI − qu) + (qu − εh) + (uI − uh).

By using Lemma 1, it can be shown that (see the proof of [13, Theorem
4.2])

(16) ‖∇h(u− uI − qu)‖0,Ω . hk+ρ(‖u‖k+2,Ω + |u|k+1,∞,Ω).

By (11) and (13) it holds that

(∇(qu−εh),∇v)T = (∆(uI−uh), v)T+(λu−λhuh, v)T−
1

2

∫

∂T

[[
∂(uI − uh)

∂nT

]]
v ds

for all v ∈ P
0
k+1(T ) with v|∂T∩∂Ω = 0. Applying the Cauchy–Schwarz

inequality, the estimates (3) and the inverse inequalities successviely and
then taking v = qu − εh, we obtain

(17) ‖∇(qu − εh)‖0,T . ‖∇(uI − uh)‖0,ωT
+ hT‖λu− λhuh‖0,T .

Hence it follows that

‖∇h(u− uh − εh)‖0,Ω . hk+ρ(‖u‖k+2,Ω + |u|k+1,∞,Ω) + ‖∇(uI − uh)‖0,Ω

+ h(λ‖u− uh‖0,Ω + |λ− λh|),

which proves the desired result by applying the estimates (10) and (5).

Theorem 2. Assume the conditions of Theorem 1 and let η be de-
fined by (12). If Th is quasi-uniform, then we have

∣∣∣∣
η

‖∇(u− uh)‖0,Ω
− 1

∣∣∣∣ . hρ.

Proof. By [15, Corollary 3.3] it is known that ‖∇(u − uh)‖0,Ω & hk.
The rest of the proof goes in a standard way using Theorem 1 (see,
e.g., [13, Theorem 4.3] or [21, Theorem 5.1]).
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4. Enhancing Eigenvalue Approximation

The piecewise quadratic or cubic function εh computed by (11) is
discontinuous across the edges of Th. The following lemma gives an
estimate on the jumps of εh across the edges.

Lemma 2. Under the conditions of Theorem 1, the following estimate
holds

( ∑

e∈EΩ

h

h−1
e ‖[[εh]]‖

2
0,e

)1/2

. hk+ρ(‖u‖k+2,Ω + |u|k+1,∞,Ω).

Proof. For the quadratic element (k = 2), we use the fact that
∫
e
v ds =

0 for v ∈ P
0
3(T ) to obtain

( ∑

e∈EΩ

h

h−1
e ‖[[εh]]‖

2
0,e

)1/2

=

( ∑

e∈EΩ

h

h−1
e

∥∥∥∥[[u − uh − εh]]−
1

he

∫

e

[[u− uh − εh]] ds

∥∥∥∥
2

0,e

)1/2

. ‖∇h(u− uh − εh)‖0,Ω.

Then the desired result follows directly from Theorem 1.

Now consider the linear element (k = 1). Fix e = ∂T1 ∩ ∂T2 and let
ωe = T1 ∪ T2. The triangle inequality gives

h−1
e ‖[[εh]]‖

2
0,e . h−1

e ‖[[εh − qu]]‖
2
0,e + h−1

e ‖[[qu]]‖
2
0,e.

By using (3) and (17) the first term is bounded as follows:

h−1
e ‖[[εh−qu]]‖

2
0,e . ‖∇h(εh−qu)‖

2
0,ωe

. ‖∇(uI−uh)‖
2
0,ωT1

∪ωT2
+h2e‖λu−λhuh‖

2
0,ωe

For the second term we use the trace inequality to get

h−1
e ‖[[qu]]‖

2
0,e = h−1

e ‖[[u−uI−qu]]‖
2
0,e . h−2

e ‖u−uI−qu‖
2
0,ωe

+‖∇h(u−uI−qu)‖
2
0,ωe

.

Let φ|Ti
∈ P2(Ti) be the P2 Lagrange interpolation of u|Ti

for i = 1, 2
which satisfies

‖u− φ‖0,ωe
+ he‖∇(u− φ)‖0,ωe

. h3
e|u|3,ωe

.
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Then we have φ− uI |Ti
∈ P

0
2(Ti) for i = 1, 2 and it follows by (3) that

h−2
e ‖u− uI − qu‖

2
0,ωe

. h−2
e ‖u− φ‖20,ωe

+ h−2
e ‖φ− uI − qu‖

2
0,ωe

. h4
e|u|

2
3,ωe

+ ‖∇h(φ− uI − qu)‖
2
0,ωe

. h4
e|u|

2
3,ωe

+ ‖∇h(u− uI − qu)‖
2
0,ωe

.

Collecting the above result, we obtain
( ∑

e∈EΩ

h

h−1
e ‖[[εh]]‖

2
0,e

)1/2

.‖∇(uI − uh)‖0,Ω + h(‖u− uh‖0,Ω + |λ− λh|)

+ h2|u|3,Ω + ‖∇h(u− uI − qu)‖0,Ω.

The proof is completed by applying the estimates (10), (5) and (16).

The most straightforward way to get a continuous function from a
piecewise polynomial function is to take the average of nodal values at
every Lagrange node of Th, which is often called the Oswald interpolation
in literature. Let ε̂h denote the continuous piecewise quadratic (k = 1)
or cubic (k = 2) function over Th obtained from εh in this way. Notice
that we have ε̂h ∈ H1

0 (Ω) because εh = 0 on ∂Ω.

Theorem 3. Under the conditions of Theorem 1, the following esti-
mate holds

‖∇(u− uh − ε̂h)‖0,Ω . hk+ρ(‖u‖k+2,Ω + |u|k+1,∞,Ω).

Proof. The triangle inequality gives

‖∇(u− uh − ε̂h)‖0,Ω ≤ ‖∇h(u− uh − εh)‖0,Ω + ‖∇h(εh − ε̂h)‖0,Ω.

From [12, Theorem 2.2] we see that the second term is bounded by

‖∇h(εh − ε̂h)‖0,Ω .

( ∑

e∈EΩ

h

h−1
e ‖[[εh]]‖

2
0,e

)1/2

.

The proof is completed by applying Theorem 1 and Lemma 2.

Theorem 3 implies that ûh = uh + ε̂h ∈ H1
0 (Ω) is a superconvergent

approximation to an eigenfunction u ∈ M(λ) and thus can be used to
enhance the eigenvalue approximation via the Rayleigh quotient (see,
e.g., (5.9) of [17])

(18) λ̂h =
a(ûh, ûh)

b(ûh, ûh)
.
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To estimate the enhanced eigenvalue error λ̂h−λ, we invoke the following
identity from [3, Lemma 9.1]

(19)
a(φ, φ)

b(φ, φ)
− λ =

a(u− φ, u− φ)

b(φ, φ)
− λ

b(u− φ, u− φ)

b(φ, φ)

which is valid for any solution (u, λ) of (2) and any nonzero function
φ ∈ H1

0 (Ω). Theorem 3 enables us to get an extra order of convergence

O(h2ρ) for the enhanced eigenvalue approximation λ̂h in comparison with
the original approximation λh (see (5)).

Theorem 4. Assume the conditions of Theorem 1 and let λ̂h be
defined by (18). For sufficiently small h, we have

|λ− λ̂h| . h2(k+ρ).

Proof. Taking φ = ûh = uh + ε̂h in (19) and applying Theorem 3, we
obtain

|λ− λ̂h| .
‖∇(u− uh − ε̂h)‖20,Ω + ‖u− uh − ε̂h‖20,Ω

‖uh + ε̂h‖20,Ω
.

h2(k+ρ)

‖uh + ε̂h‖20,Ω
.

Since ε̂h|T ∈ P
0
k+1(T ) for T ∈ Th, it follows by (3), (5) and Theorem 3

that

‖ε̂h‖0,Ω . h‖∇ε̂h‖0,Ω ≤ h(‖∇(u−uh− ε̂h)‖0,Ω+‖∇(u−uh)‖0,Ω) . hk+1,

and hence

‖uh + ε̂h‖0,Ω ≥ ‖uh‖0,Ω − ‖ε̂h‖0,Ω & 1− hk+1 & 1

if h is sufficiently small. This completes the proof.

5. Numerical Results

In this section we numerically investigate the effectiveness of using
the Bank–Weiser error estimators to enhance the eigenvalue approxima-
tions. All computations are performed with MATLAB R2018b and the
discrete algebraic system (4) is solved by the command eigs with the
normalization ‖uh‖0,Ω = 1.

We consider the Laplace eigenvalue problem (1) on the L-shaped do-
main Ω = (−1, 1)2\[0, 1]×[−1, 0] which has a re-entrant corner at the ori-
gin. The first and second eigenvalues are approximately 9.639723844021941
and 15.197251926454343 when rounded to 15 decimal places (cf. [1]),
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Figure 1. Initial triangulation on Ω = (−1, 1)2 \ [0, 1]×
[−1, 0] with the mesh size h = 1

4

while the third eigenvalue is exactly 2π2 = 19.739208802178716 · · · . It
is known that the first and second eigenfunctions have the leading term
O(r2/3) and O(r4/3) in a series expansion using the polar coordinates
(r, θ) near the origin. This implies that the first and second eigenfunc-
tions belong to H t+1(Ω) with t = 2

3
− ǫ and t = 4

3
− ǫ, respectively, for

any ǫ > 0. On the other hand, the third eigenfunction has the explicit
form u(x, y) = sin(πx) sin(πy) which is also the first eigenfunction of the
Laplace operator on the unit square (0, 1)2.

The P1 and P2 finite element solutions (uh, λh) of (4) are computed
on a sequence of uniform regular triangulations generated by successive
refinement of every triangle into four congruent subtriangles starting
with the initial triangulation of equal right isosceles triangles as shown
in Figure 1. These triangulations satisfy the condition (α, σ) with α =
σ = ∞, and thus we have ρ = 1. This implies that the actual orders of

convergence for the eigenvalue approximations λh and λ̂h are dictated
by the regularity of the corresponding eigenfunctions.

We report the values of the eigenvalue errors in Tables 1–3 for the
smallest three eigenvalues mentioned above. The numerical order of
convergence next to the error |λ− λh| is evaluated by

Order = log2
|λ− λ2h|

|λ− λh|
,

and similarly for |λ − λ̂h|. From Table 1 we observe that the order of
convergence for |λ − λh| is about 4

3
for both P1 and P2 elements as

predicted by the theoretical estimate (5) with t = 2
3
− ǫ. It is clearly



Enhancing eigenvalue approximation with Bank–Weiser error estimators 599

seen that the order of convergence is not improved by the eigenvalue
enhancement, although the error becomes slightly smaller, because the
eigenfunction is not sufficiently smooth. In the case of the second eigen-
value we have t = 4

3
− ǫ, so the eigenvalue approximation λh is optimal

for the P1 element but not for the P2 element as observed in Table 2.
Besides it appears from Table 2 that the enhanced eigenvalue approxi-

mation λ̂h gains an extra order of convergence O(h
2

3 ) for the P1 element
but nothing for the P2 element. On the other hand, Table 3 shows that
the eigenvalue enhancement achieves the full extra order of convergence
O(h2) for the third eigenvalue. This is in accordance with Theorem 4 as
the third eigenfunction is smooth.

Table 1. Eigenvalue errors for the 1st eigenvalue λ ≈
9.639723844021941

P1 P2

1/h |λ− λh| Order |λ− λ̂h| Order |λ− λh| Order |λ− λ̂h| Order

4 9.342e–01 — 1.151e–01 — 6.327e–02 — 3.330e–02 —

8 2.768e–01 1.755 4.509e–02 1.352 2.388e–02 1.406 1.336e–02 1.318

16 8.865e–02 1.643 1.813e–02 1.315 9.427e–03 1.341 5.319e–03 1.329

32 3.009e–02 1.559 7.234e–03 1.325 3.741e–03 1.333 2.112e–03 1.332

64 1.069e–02 1.493 2.876e–03 1.331 1.485e–03 1.333 8.385e–04 1.333

128 3.933e–03 1.443 1.142e–03 1.333 5.893e–04 1.333 3.328e–04 1.333

Table 2. Eigenvalue errors for the 2nd eigenvalue λ ≈
15.197251926454343

P1 P2

1/h |λ− λh| Order |λ− λ̂h| Order |λ− λh| Order |λ− λ̂h| Order

4 1.750e+00 — 7.946e–02 — 3.714e–02 — 2.012e–03 —

8 4.360e–01 2.005 6.134e–03 3.695 2.972e–03 3.643 2.220e–04 3.180

16 1.093e–01 1.996 6.014e–04 3.350 2.765e–04 3.426 3.338e–05 2.733

32 2.742e–02 1.995 7.426e–05 3.018 3.144e–05 3.137 5.235e–06 2.673

64 6.873e–03 1.996 1.049e–05 2.823 4.195e–06 2.906 8.241e–07 2.667

128 1.721e–03 1.998 1.580e–06 2.731 6.136e–07 2.773 1.298e–07 2.667
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Table 3. Eigenvalue errors for the 3rd eigenvalue λ =
2π2 ≈ 19.739208802178716

P1 P2

1/h |λ− λh| Order |λ− λ̂h| Order |λ− λh| Order |λ− λ̂h| Order

4 3.080e+00 — 1.892e–01 — 6.564e–02 — 2.447e–03 —

8 7.631e–01 2.013 1.107e–02 4.095 4.435e–03 3.888 4.353e–05 5.813

16 1.904e–01 2.003 6.653e–04 4.056 2.831e–04 3.969 7.114e–07 5.935

32 4.757e–02 2.001 4.114e–05 4.015 1.779e–05 3.992 1.131e–08 5.975

64 1.189e–02 2.000 2.565e–06 4.004 1.114e–06 3.998 1.783e–10 5.988

128 2.973e–03 2.000 1.602e–07 4.001 6.964e–08 3.999 2.206e–12 6.336
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