A NOTE ON N-POLYNOMIALS OVER FINITE FIELDS

Kitae Kim and Ikkwon Yie

Abstract

A simple type of Cohen's transformation consists of a polynomial and a linear fractional transformation. We study the effectiveness of Cohen transformation to find N -polynomials over finite fields.

1. Introduction

Let \mathbb{F}_{q} denote the finite field with q elements, where q is a prime power and \mathbb{F}_{q}^{*} be its multiplicative group. An element α in an extension $\mathbb{F}_{q^{n}}$ of \mathbb{F}_{q} is called a normal element of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} if its conjugates form a basis of $\mathbb{F}_{q^{n}}$ as an $\mathbb{F}_{q^{-}}$-vector space. In this case, the set of conjugates is called a normal basis.

An irreducible polynomial in $\mathbb{F}_{q}[x]$ is called an N-polynomial or normal polynomial if its roots are linearly independent over \mathbb{F}_{q}. That is, the minimal polynomial of a normal element is N-polynomial when conjugates of the normal element form a basis of the splitting field of the minimal polynomial. As in the normal bases, finding criteria and constructing N-polynomials is a challenging problem.

[^0]Perlis [12] and Pei et al. [11] gave simple normaility criteria of polynomials in strictly constrained conditions, which will be presented in section 2. Schwarz [13] proposed a powerful tool for determining whether an irreducible polynomial is an N-polynomia, based on vector space argument. Jungnickel [5] proposed several characterizations of self-dual normal bases and their affine transformations, and an explicit construction of a self-dual normal basis in extension fields over \mathbb{F}_{2}. In the paper [8], Kyuregyan suggested an iterated constructions of a sequence $\left(F_{k}(x)\right)_{k \geq 1}$ of N-polynomials over $\mathbb{F}_{2^{s}}$. The resulting sequence was proven to be trace-compatible in the sense that relative trace $\operatorname{Tr}_{\left.2^{k} n\right|^{k-1} n}$ maps roots of $F_{k}(x)$ onto those of $F_{k-1}(x)$. The author also showed that the composition of an N-polynomial $F(x)$ and a linear polynomial $a x+b$ remains an N-polynomial over \mathbb{F}_{q} of characteristic p if $\operatorname{deg}(F)$ is divisible by p.

In this paper, we revisit Jungnickel's normality criterion by interpreting in terms of N-polynomial, which allows a neat presentation of a result on affine transformation of N-polynomials.

2. Preliminaries

Throughout the paper, we assume that \mathbb{F}_{q} is the finite field with q elements and of characteristic p. Note that $p=2$ is allowed, unless otherwise stated.

Proposition 2.1 (Cohen [2]). Let $g(x)=\frac{u(x)}{v(x)} \in \mathbb{F}_{q}(x)$ be a rational function with $\operatorname{gcd}(u, v)=1$ and let $f(x) \in \mathbb{F}_{q}[x]$ be an irreducible polynomial of degree n. Consider the polynomial $F(x)$ defined by

$$
\begin{equation*}
F(x)=v^{n} f\left(\frac{u}{v}\right) . \tag{1}
\end{equation*}
$$

Then $F(x)$ is irreducible over \mathbb{F}_{q} if and only if $u-\alpha v$ is irreducible over $\mathbb{F}_{q^{n}}$ for some root $\alpha \in \mathbb{F}_{q^{n}}$ of $f(x)$.

Eq. (1) is referred to Cohen's transformation. If $f(x)$ is an irreducible polynomial of degree n over \mathbb{F}_{q} and $g(x)$ is a fractional linear transformation, then $F(x)$ is irreducible over $\mathbb{F}_{q^{n}}$.

Proposition 2.2 (Meyn [10]). Let $q=2^{s}$ for some positive integer s. Let $f(x)=\sum_{i=0}^{n} c_{i} x^{i} \in \mathbb{F}_{q}[x]$ be irreducible of degree n. If $\operatorname{Tr}_{q \mid 2}\left(c_{1} / c_{0}\right) \neq$ 0 then $x^{n} f\left(x+x^{-1}\right)$ is irreducible over \mathbb{F}_{q} of degree $2 n$.

Based on above proposition, Gao [3] and Kyuregyan [7] deduced constructions of sequences of irreducible polynomials over \mathbb{F}_{q}.

Proposition 2.3 (Kyuregyan [7]). Let $\delta \in \mathbb{F}_{2^{s}}^{*}$ and $F_{1}(x)=\sum_{u=0}^{n} c_{u} x^{u}$ be an irreducible polynomial over $\mathbb{F}_{2^{s}}$ whose coefficients satisfy the conditions

$$
\operatorname{Tr}_{2^{s} \mid 2}\left(\frac{c_{1} \delta}{c_{0}}\right)=1 \quad \text { and } \quad T r_{2^{s} \mid 2}\left(\frac{c_{n-1}}{\delta}\right)=1
$$

Then all members of the sequence $\left(F_{k}(x)\right)_{k \geq 1}$ defined by

$$
F_{k+1}(x)=x^{2^{k-1} n} F_{k}\left(x+\delta^{2} x^{-1}\right), \quad k \geq 1
$$

are irreducible polynomials over $\mathbb{F}_{2^{s}}$.
It was shown that if the initial polynomial F_{1} is given to be an N polynomial then the resulting sequence is indeed a family of N-polynomials [8]. We note that Kyuregyan's proof of the normality uses the restriction of F_{1} in the above proposition.

Proposition 2.4 (Perlis [12]). Let $n=p^{e}$ and let $f=x^{n}+a_{1} x^{n-1} \cdots+$ $a_{n-1} x+a_{n}$ be an irreducible polynomial of degree n over $\mathbb{F}_{q} . f$ is N polynomial if and only if $a_{1} \neq 0$.

3. N-polynomials from Cohen's transformation

In [5], Jungnickel gives normality criteria of elements on finite fields. The following theorem is an N-polynomial analogue of Jungnickel's results on normal elements.

ThEOREM 3.1. Let $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ be a polynomial over \mathbb{F}_{q} of degree $n \geq 1$ and $F(x)=f(a x+b)$ where $a, b \in \mathbb{F}_{q}$ with $a \neq 0$. If $f(x)$ is an N-polynomial and $n b a_{0}+a_{1} \neq 0$ then $F(x)$ is an N-polynomial over \mathbb{F}_{q}. Conversely, if $F(x)$ is an N-polynomial and $a_{1} \neq 0$ then $f(x)$ is also an N-polynomial over \mathbb{F}_{q}.

Proof. First note that, by Proposition 2.1, $F(x)$ is irreducible over \mathbb{F}_{q}. Let α be a root of f. Then

$$
F(x)=a_{0} a^{n} \prod_{i=0}^{n-1}\left(x-\frac{\alpha^{q^{i}}-b}{a}\right) .
$$

To prove the first part, it suffices to show that $\alpha-b, \ldots, \alpha^{q^{n-1}}-b$ are linearly independent. Suppose that $\sum_{i=0}^{n-1} c_{i}\left(\alpha^{q^{i}}-b\right)=0$ for $c_{i} \in \mathbb{F}_{q}$. Then, since $\operatorname{Tr}_{q^{n} / q}(\alpha)=\frac{-a_{1}}{a_{0}} \neq 0$,

$$
\sum_{i=0}^{n-1} c_{i}\left(\frac{-a_{1}}{a_{0}}-n b\right)=0
$$

Since $n b a_{0}+a_{1} \neq 0, \sum_{i=0}^{n-1} c_{i}=0$ and hence $\sum_{i=0}^{n-1} c_{i} \alpha^{q^{i}}=\sum_{i=0}^{n-1} c_{i} b=0$. Therefore, $c_{i}=0$ for all i.

Since $f(x)=F((1 / a) x-b / a)$, the second part is an immediate consequence of the first part.

Note that the second highest term of an N-polynomial is nonzero. The above theorem says that, when $p \mid n, f(x)$ is an N-polynomial if and only if $F(x)$ is an N-polynomial, which implies the following Kyuregyan's result:

Corollary 3.2 (Kyuregyan [8]). Let $n=p^{e} n_{1}$ with $\operatorname{gcd}\left(p, n_{1}\right)=1$, $e \geq 1$. Let $f(x)=\sum_{i=0}^{n} c_{i} x^{i}$ be an N-polynomial of degree n over \mathbb{F}_{q}. If $a, b \in \mathbb{F}_{q}$ with $a \neq 0$ then the polynomial $F(x)=f(a x+b)$ is an N-polynomial over \mathbb{F}_{q}.

In the study of irreducible polynomials over finite fields, group action has been played an important role. Let $G L\left(2, \mathbb{F}_{q}\right)$ be the general linear group and $P G L\left(2, \mathbb{F}_{q}\right)$ the projective linear group defined by the quotient group

$$
P G L\left(2, \mathbb{F}_{q}\right)=G L\left(2, \mathbb{F}_{q}\right) /\left\{k I_{2} \mid k \in \mathbb{F}_{q}^{*}\right\}
$$

where I_{2} denote the 2×2 identity matrix. Some of $G L\left(2, \mathbb{F}_{q}\right)$ - and $\operatorname{PGL}\left(2, \mathbb{F}_{q}\right)$-actions on the set of irreducible polynomials over \mathbb{F}_{q} were introduced in literatures. In particular, an action of $G L\left(2, \mathbb{F}_{q}\right)$ on the set \mathcal{M}_{n} of irreducible polynomials over \mathbb{F}_{q} of degree n is given as follows: for a group element σ and an irreducible polynomial f, the σ-action of f can be given

$$
f^{\sigma}=(c x+d)^{n} \cdot f\left(\frac{a x+b}{c x+d}\right), \quad \text { where } \sigma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Using equivalence relations on $G L(2, q)$ and \mathcal{M}_{n} given by

$$
\begin{aligned}
\sigma \sim \tau \Leftrightarrow \sigma=\lambda \tau & \text { for some } \lambda \in \mathbb{F}_{q}^{*} ; \\
f \sim g \Leftrightarrow g=\lambda f & \text { for some } \lambda \in \mathbb{F}_{q}^{*},
\end{aligned}
$$

a $\operatorname{PGL}(2, q)$-action on the set of monic irreducible polynomials is obtained (See [14]). Under the $P G L(2, q)$-action on the set of monic irreducible polynomials, it was shown that if $\operatorname{gcd}\left(n, q\left(q^{2}-1\right)\right)=1$ then the point stabilizer is trivial ([1], [14]). That is, $\mathcal{O}_{f}=\left\{I_{2}\right\}$ for any monic irreducible polynomial f.

Corollary 3.3. Let $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ be a monic N-polynomial of degree n over \mathbb{F}_{q}.

1. If $\operatorname{gcd}(p, n)=1$, then the compositions $f(x+b)$, for every $b \in \mathbb{F}_{q}$, produces $(q-1)$ different monic N-polynomials of degree n.
2. If $\sigma=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right) \in P G L\left(2, \mathbb{F}_{q}\right)$ satisfies $n k b \neq-a_{1}$ for all $0 \leq$ $k<\operatorname{ord}(\sigma)$, and if $\operatorname{gcd}\left(n, q\left(q^{2}-1\right)\right)=1$, then one can get $\operatorname{ord}(\sigma)$ different monic N-polynomials over \mathbb{F}_{q} of degree n.
Proof. Since $p \nmid n$, there is unique $b \in \mathbb{F}_{q}$ such that $n b=-a_{1}$. This means that there are at least $(q-1)$ number of N-polynomials of the form $f(x+b)$ where b satisfies $n b \neq-a_{1}$. Now, suppose that $f\left(x+b_{1}\right)=$ $f\left(x+b_{2}\right)$ for some $b_{1}, b_{2} \in \mathbb{F}_{q}$ with $n b_{i} \neq a_{1}(i=1,2)$. Let α be a root of $f(x)$. Then

$$
\sum_{i=0}^{n} b_{1}-\alpha^{q^{i}}=\sum_{i=0}^{n} b_{2}-\alpha^{q^{i}}
$$

That is, $n b_{1}=n b_{2}$. Since $p \nmid n, b_{1}=b_{2}$. Therefore, such N-polynomials of the form $f(x+b)$ must be distinct, and this proves the first part.

For each k,

$$
\sigma^{k}=\left(\begin{array}{cc}
1 & k b \\
0 & 1
\end{array}\right)
$$

By Theorem 3.1 and the assumption $n k b+a_{1} \neq 0$, we conclude $f^{\sigma^{k}}$ are N-polynomials for all k, and the second part follows from the argument mentioned above.

It seems hard to get normality criteria for such actions in full generality. On the other hand, we suggest a condition for an element σ of $G L(2, q)$ or $P G L(2, q)$ to preserve the normality of polynomials whose degrees are power of characteristic p.

Theorem 3.4. Let $n=p^{e}$ with $e \geq 1$ and $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L(2, q)$. Let $f(x)$ be an N-polynomial of degree n and α a root of f. If $\operatorname{Tr}_{q^{n} \mid q}\left(\frac{\alpha}{c \alpha-a}\right)$
$\neq 0$ then f^{σ} is an N-polynomial of degree n. In case that $a \neq 0$, it is an equivalent condition.

Proof. Let a_{n} denote the leading coefficient of $f(x)$, and write f^{σ} as

$$
a_{n}\left[\prod_{i}\left(a-c \alpha^{q^{i}}\right)\right]\left[\prod_{i}\left(x+\frac{b-d \alpha^{q^{i}}}{a-c \alpha^{q^{i}}}\right)\right] .
$$

Let $\beta=\frac{-d \alpha+b}{c \alpha-a}$. Since $p \mid n$, we have $\operatorname{Tr}_{q^{n} \mid q}(\alpha(c \beta+d))=\operatorname{Tr}_{q^{n} \mid q}(a \beta)$. Since

$$
\begin{aligned}
c \beta+d & =c \frac{-d \alpha+b}{c \alpha-a}+d \\
& =\frac{-c d \alpha+c b+c d \alpha-a d}{c \alpha-a} \\
& =\frac{-a d+b c}{c \alpha-a}
\end{aligned}
$$

$$
\begin{equation*}
(-a d+b c) \operatorname{Tr}_{q^{n} \mid q}\left(\frac{\alpha}{c \alpha-a}\right)=a \operatorname{Tr}_{q^{n} \mid q}(\beta) \tag{2}
\end{equation*}
$$

Note that, by Proposition 2.1, f^{σ} is irreducible. Hence, Proposition 2.4 tells us that f^{σ} is N-polynomial if and only if $\operatorname{Tr}_{q^{n} \mid q}(\beta) \neq 0$. Therefore, the assertion follows immediately from Eq. (2).

4. N-polynomials from Q-transformation

In this section, we assume \mathbb{F}_{q} is a finite field of characteristic 2 and $f(x)$ is a polynomial of degree n over \mathbb{F}_{q}. The Q-transformation of f is defined by

$$
f^{Q}(x):=x^{n} f\left(x+\delta^{2} x^{-1}\right),
$$

where $\delta \in \mathbb{F}_{q}^{*}$.
Based on Proposition 2.3, M.K. Kyuregyan established an infinite sequence of N-polynomials over \mathbb{F}_{q} ($[8]$, see Corollaryollary 4.2 below). Kyuregyan's proof for normality of resulting sequences depends on initial conditions (see Eq. (3) below). In this section, we give a slightly different presentation of Kyuregyan's proof without initial conditions.

Lemma 4.1. Let $f(x)$ be an N-polynomial over \mathbb{F}_{q} of degree n, and $\eta, \gamma \in \mathbb{F}_{q}^{*}$. Let $F(x)$ be a polynomial defined by

$$
F(x)=x^{n} f\left(\eta x+\frac{\gamma}{x}\right)
$$

If $F(x)$ is irreducible over \mathbb{F}_{q} then it is an N-polynomial of degree $2 n$.
Proof. We first write $f(x)$ as

$$
f(x)=a_{0} \prod_{i=0}^{n-1}\left(x-\alpha^{q^{i}}\right)
$$

Then

$$
\begin{aligned}
F(x) & =a_{0} x^{n} \prod_{i=0}^{n-1}\left(\eta x+\frac{\gamma}{x}-\alpha^{q^{i}}\right) \\
& =a_{0} \eta^{n} \prod_{i=0}^{n-1}\left(x^{2}-\frac{1}{\eta} \alpha^{q^{i}} x+\frac{\gamma}{\eta}\right) .
\end{aligned}
$$

Note that, since $F(x)$ is irreducible over $\mathbb{F}_{q}, x^{2}-\frac{1}{\eta} \alpha^{q^{i}} x+\frac{\gamma}{\eta}$ will be irreducible over $\mathbb{F}_{q^{n}}$ for each $0 \leq i<n$. Let β be a root of $x^{2}-\frac{1}{\eta} \alpha x+\frac{\gamma}{\eta}$. Then $\alpha=\beta+\beta^{q^{n}}$. Suppose that $\sum_{i=0}^{2 n-1} c_{i} \beta^{q^{i}}=0$ for $c_{i} \in \mathbb{F}_{q}$. Then $\sum_{i=0}^{2 n-1} c_{i} \beta^{q^{i+1}}=0$ and so $\sum_{i=0}^{2 n-1} c_{i} \alpha^{q^{i}}=0$, for $\alpha=\beta+\beta^{q^{n}}$. Since $f(x)$ is an N-polynomial over \mathbb{F}_{q} of degree $n, \alpha, \ldots, \alpha^{q^{n}}$ form a normal basis of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q}, and hence $c_{n+i}=c_{i}$ for each $0 \leq i<n$. Thus, we get

$$
\begin{aligned}
0 & =\sum_{i=0}^{2 n-1} c_{i} \beta^{q^{i}}=\sum_{i=0}^{n-1} c_{i} \beta^{q^{i}}+\sum_{i=0}^{n-1} c_{i} \beta^{q^{n+i}} \\
& =\sum_{i=0}^{n-1} c_{i}\left(\beta^{q^{i}}+\beta^{q^{n+i}}\right)=\sum_{i=0}^{n-1} \frac{c_{i}}{\eta} \alpha^{q^{i}} .
\end{aligned}
$$

Since $\alpha, \ldots, \alpha^{q^{n-1}}$ are linearly independent over \mathbb{F}_{q}, we have $c_{i}=0$ for $0 \leq i<n$. Therefore, $c_{i}=0$ for all $0 \leq i<2 n$. That is, $F(x)$ must be an N-polynomial over \mathbb{F}_{q}.

In above proof, α and β satisfy $\alpha=\beta+\beta^{q^{n}}$, and so $\operatorname{Tr}_{q^{2 n} \mid q^{n}}(\beta)=\alpha$. That is, $f(x)$ and $F(x)$ are trace-comparable.

Corollary 4.2 (Kyuregyan [8]). Let s be a positive integer, $\delta \in \mathbb{F}_{2}^{*}$ and $F_{1}(x)=\sum_{u=0}^{n} c_{u} x^{u}$ be an N-polynomial of degree n over $\mathbb{F}_{2^{s}}$ such that

$$
\begin{equation*}
\operatorname{Tr}_{2^{s} \mid 2}\left(\frac{c_{1} \delta}{c_{0}}\right)=1 \quad \text { and } \quad \operatorname{Tr}_{2^{s} \mid 2}\left(\frac{c_{n-1}}{\delta}\right)=1 \tag{3}
\end{equation*}
$$

Then the sequence $\left(F_{k}(x)\right)_{k \geq 1}$ defined by

$$
F_{k+1}(x)=x^{2^{k-1} n} F_{k}\left(x+\delta^{2} x^{-1}\right), \quad k \geq 1
$$

is a trace-compatible sequence of N-polynomials of degree $2^{k} n$ over $\mathbb{F}_{2^{s}}$ for every $k \geq 1$.

Proof. By Proposition 2.3, it suffices to prove the normality of the sequence. For each $k \geq 1$, applying Theorem 4.1 recursively with $q=$ $2^{s}, n=2^{k} n, \eta=1, \gamma=\delta^{2}, f(x)=F_{k}(x)$ yields that F_{k+1} is an N polynomial of degree $2^{k} n$ over $\mathbb{F}_{2^{s}}$.

We remark that Lemma 4.1 can be deduced from Corollary 4.2 by taking $k=1$ and using suitable transformation.

Corollary 4.3. Let $f(x)=\sum_{i=0}^{n} c_{i} x^{i} \in \mathbb{F}_{2^{s}}[x]$ be an N-polynomial of degree n. If $\operatorname{Tr}_{2^{s} \mid 2}\left(c_{1} / c_{0}\right) \neq 0$ then $x^{n} f\left(x+x^{-1}\right)$ is an N-polynomial over $\mathbb{F}_{2^{s}}$ of degree $2 n$.

Proof. By Proposition 2.2, $x^{n} f\left(x+x^{-1}\right)$ is irreducible over $\mathbb{F}_{2^{s}}$. Hence, the result follows by taking taking $\eta=\gamma=1$ in Theorem 4.1, we obtain the desired result.

References

[1] X. Cao and L. Hu, On the reducibility of some composite polynomials over finite fields, Des. Codes Cryptogr. 64 (2012), 229-239.
[2] S. D. Cohen, The explicit construction of irreducible polynomials over finite fields, Des. Codes Cryptogr. 2 (1993), 169-173.
[3] S. Gao, Normal bases over finite fields, PhD Thesis, Univ. of Waterloo, Canada, 1993.
[4] Garefalskis, On the action of $G L_{2}\left(\mathbb{F}_{q}\right)$ of irreducible polynomials over finite fields, J. Pure Appl. Algebra 215(2011), 159-176.
[5] D. Jungnickel, Trace-orthogonal normal bases, Discrete Appl. Math. 47 (1993) 233-249.
[6] K. Kim, J. Namgoong, I. Yie, Groups of permutations generated by func-tion-linear translator pairs, Finite Fields Appl. 45 (2017) 170-182.
[7] M.K. Kyuregyan, Recurrent methods for constructing irreducible polynomials over $G F\left(2^{s}\right)$, Finite Fields Appl. 8 (2002), 52-68.
[8] M.K. Kyuregyan, Iterated constructions of irreducible polynomials over finite fields with linearly independent roots, Finite Fields Appl. 10 (2004), 323-341.
[9] A. Lempel and M. J. Weinberger, Self-complementary normal bases in finite fields, SIAM J. Discrete Math. 1 (1988), 758-767.
[10] H. Meyn, On the construction of irreducible self-reciprocal polynomials over finite fields, App. Alg in Eng., Comm. and Comp. 1 (1990), 43-53.
[11] D. Pei, C.C. Wang and J.K. Omura, Normal bases of finite field $G F\left(2^{m}\right)$ " IEEE Trans. Info. Th. 32 (1986), 285-287.
[12] S. Perlis, Normal bases of cyclic fields of prime-power degree, Duke Math. J. 9 (1942), 507-517.
[13] S.S. Schwarz, "Construction of normal bases in cyclic extensions of a field", Czechslovak Math. J. 38(1988), 291-312.
[14] H. Stichtenoth and A. Topouzoglu, Factorization of a class of polynomials over finite fields, Finite Fields Appl. 18 (2012), 108-122.

Kitae Kim

Department of Mathematics, Inha University
Incheon, Korea
E-mail: ktkim@inha.ac.kr

Ikkwon Yie

Department of Mathematics, Inha University
Incheon, Korea
E-mail: ikyie@inha.ac.kr

[^0]: Received July 28, 2020. Revised September 8, 2020. Accepted September 18, 2020.

 2010 Mathematics Subject Classification: 11T71, 12E10, 12E20.
 Key words and phrases: Normal basis, N-polynomial, Cohen transformation, Qtransormation.

 This research was supported by the National Research Foundation of Korea grant funded by the Korea government (NRF-2017R1D1A1B03034721).
 (c) The Kangwon-Kyungki Mathematical Society, 2020.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

