Korean J. Math.  Vol 29, No 1 (2021)  pp.41-55
DOI: https://doi.org/10.11568/kjm.2021.29.1.41

Woven $g$-frames in Hilbert $C^*$-modules

Ekta Rajput, Nabin Kumar Sahu, Vishnu Narayan Mishra


Woven frames are motivated from distributed signal processing with potential applications in wireless sensor networks. g-frames provide more choices on analyzing functions from the frame expansion coefficients. The objective of this paper is to introduce woven $g$-frames in Hilbert $C^*$-modules, and to develop its fundamental properties. In this investigation, we establish sufficient conditions under which two g-frames possess the weaving properties. We also investigate the sufficient conditions under which a family of g-frames possess weaving properties.


Woven frames, g-frames, Hilbert $C^*$-modules

Subject classification

42C15, 46B15


Full Text:



L. Arambaic, On frames for countably generated Hilbert C∗-modules, Proc. Amer. Math. Soc. 135 (2007), 469–478. (Google Scholar)

T. Bemrose, P. G. Casazza, K. Grochenig, M. C. Lammers and R. G. Lynch, Weaving frames, Oper. Matrices 10 (4) (2016), 1093–1116. (Google Scholar)

H. Bolcskei, F. Hlawatsch and H. G. Feichtinger, Frame-theoretic analysis of oversampled filter banks, IEEE Trans. Signal Process. 46 (12) (1998), 3256–3268. (Google Scholar)

J. S. Byrnes, Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction, Signals Processing for Multimedia 174 (1999), 35–54. (Google Scholar)

E. J. Candes and D. L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities, Commun. Pure Appl. Math. 57 (2) (2004), 219–266. (Google Scholar)

P. G. Casazza, G. Kutyniok and Sh. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal. 25 (2008), 114–132. (Google Scholar)

P. G. Casazza and R. G. Lynch, Weaving properties of Hilbert space frames, Sampling Theory and Applications (SampTA) (2015), 110–114 IEEE. (Google Scholar)

P. G. Casazza, D. Freeman and R. G. Lynch, Weaving Schauder frames, J. Approx. Theory 211 (2016), 42–60. (Google Scholar)

I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271–1283. (Google Scholar)

R. J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366. (Google Scholar)

Y. C. Eldar, Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors, J. Fourier. Anal. Appl. 9 (1) (2003), 77–96. (Google Scholar)

M. Frank and D. R. Larson, Frames in Hilbert C*-modules and C*-algebras, J. Operator Theory 48 (2002), 273–314. (Google Scholar)

F. Ghobadzadeh, A. Najati, G. A. Anastassiou and C. Park, Woven frames in Hilbert C∗- modules, J. Comput. Anal. Appl. 25 (2018), 1220–1232. (Google Scholar)

I. Kaplansky, Algebra of type I, Annals of Math. 56 (1952), 460–472. (Google Scholar)

A. Khosravi and B. Khosravi, Fusion frames and g-frames in Hilbert C*-modules, Int. J. Wavelets Multiresol. Inf. Process. 6 (2008), 433–466. (Google Scholar)

S. Li and H. Ogawa, Pseudoframes for subspaces with applications, J. Fourier Anal. Appl. 10 (4) (2004), 409–431. (Google Scholar)

D. Li, J. Leng and T. Huang, On weaving g-frames for Hilbert spaces, Complex Anal. Oper. Theory 14 (2) (2017), 1–25. (Google Scholar)

W. Paschke, Inner product modules over B∗-algebras, Trans. Amer. Math. Soc. 182 (1973), 443–468. (Google Scholar)

T. Strohmer and R. Jr. Heath, Grassmanian frames with applications to coding and communi- cations, Appl. Comput. Harmon. Anal. 14 (2003), 257–275. (Google Scholar)

W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (1) (2006), 437–452. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr