Korean J. Math. Vol. 28 No. 4 (2020) pp.889-906
DOI: https://doi.org/10.11568/kjm.2020.28.4.889

On the uniqueness of certain type of shift polynomials sharing a small function

Main Article Content

Biswajit Saha


In this article, we consider the uniqueness problem of the shift polynomials $f^{n}(z)(f^{m}(z)-1)\displaystyle\prod_{j=1}^{s} f(z+c_{j})^{\mu _{j}}$ and $f^{n}(z)(f(z)-1)^{m}\displaystyle\prod_{j=1}^{s} f(z+c_{j})^{\mu _{j}}$, where $f(z)$ is a transcendental entire function of finite order, $c_{j} (j=1, 2, ..., s)$ are distinct finite complex numbers and $n(\geq 1),$ $m(\geq 1),$ $s$ and $\mu _{j} (j=1, 2, ..., s)$ are integers. With the concept of weakly weighted sharing and relaxed weighted sharing we obtain some results which extend and generalize some results due to P. Sahoo [Commun. Math. Stat. 3 (2015), 227-238].

Article Details


[1] A. Banerjee and S. Mukherjee, Uniqueness of meromorphic functions concerning dierential monomials sharing the same value, Bull. Math. Soc. Sci., 50(2007), 191-206. Google Scholar

[2] M.R. Chen and Z.X. Chen, Properties of dierence polynomials of entire functions with nite order, Chinese Ann. Math. Ser. A, 33(2012), 359-374. Google Scholar

[3] Y.M. Chiang and S.J. Feng, On the Nevanlinna characteristic of f(z + ) and dierence equations in the complex plane, Ramanujan J., 16(2008), 105-129. Google Scholar

[4] R.G. Halburd and R.J. Korhonen, Nevanlinna theory for the dierence operator, Ann. Acad. Sci. Fenn. Math., 31(2006), 463-478. Google Scholar

[5] R.G. Halburd and R.J. Korhonen, Dierence analogue of the lemma on the logarithmic derivative with application to dierence equations, J. Math. Anal. Appl., 314(2006), 477-487. Google Scholar

[6] W.K. Hayman, Meromorphic Functions. Oxford Mathematical Monographs Clarendon Press, Oxford 1964. Google Scholar

[7] I. Laine, Nevanlinna Theory and Complex Dierential Equations, Walter de Gruyter, Berlin/Newyork, 1993. Google Scholar

[8] I. Laine and C.C. Yang, Value distribution of dierence polynomials, Proc. Japan Acad. SerA Math. Sci., 83(2007), 148-151. Google Scholar

[9] S.H. Lin and W.C. Lin, Uniqueness of meromorphic functions concerning weakly weighted sharing, Kodai Math. J., 29(2006), 269-280. Google Scholar

[10] X.Q. Lin and W.C. Lin, Uniqueness of entire functions sharing one value, Acta Math. Sci., Ser. B. Engl. Ed., 31(2011), 1062-1076. Google Scholar

[11] X. Luo and W.C. Lin, Value sharing results for shifts of meromorphic functions, J. Math. Anal. Appl., 377(2011), 441-449. Google Scholar

[12] C. Meng, Uniqueness of entire functions concerning dierence polynomials, Math. Bohem., 139(2014), 89-97. Google Scholar

[13] P. Sahoo, Uniqueness of entire functions related to dierence polynomials, Commun. Math. Stat., 3(2015), 227-238. Google Scholar

[14] H.X. Yi, Meromorphic functions that share one or two values, Complex Var. Theory Appl., 28(1995), 1-11. Google Scholar

[15] H.X. Yi and C.C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995. Google Scholar

[16] J.L. Zhang, Value distribution and shared sets of dierences of meromorphic functions, J. Math. Anal. Appl., 367(2010), 401-408. Google Scholar