Korean J. Math.  Vol 29, No 2 (2021)  pp.445-453
DOI: https://doi.org/10.11568/kjm.2021.29.2.445

Para-Kenmotsu metric as a $\eta$-Ricci soliton

Satyabrota Kundu


The purpose of the paper is to study of Para-Kenmotsu metric as a $\eta$-Ricci soliton. The paper is organized as follows:
* If an $\eta$-Einstein para-Kenmotsu metric represents an $\eta$-Ricci soliton with flow vector field $V$, then it is Einstein with constant scalar curvature $r = -2n(2n+1)$.
* If a para-Kenmotsu metric $g$ represents an $\eta$-Ricci soliton with the flow vector field $V$ being an infinitesimal paracontact transformation, then $V$ is strict and the manifold is an Einstein manifold with constant scalar curvature $r = -2n(2n+1)$.
* If a para-Kenmotsu metric $g$ represents an $\eta$-Ricci soliton with non-zero flow vector field $V$ being collinear with $\xi$, then the manifold is an Einstein manifold with constant scalar curvature $r = -2n(2n+1)$.
Finally, we cited few examples to illustrate the results obtained.


Para-Kenmotsu, η-Ricci soliton, infinitesimal paracontact transformation, η-Einstein, Einstein.

Subject classification

53C15, 53C21, 53C25, 53D15.


Full Text:



Bejan, C.L., Crasmareanu, M., Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry, Annals of Global Analysis and Geometry volume 46 (2014), 117– 127. (Google Scholar)

Calvaruso, G., Perrone, D., Geometry of H-paracontact metric manifolds, arxiv:1307.7662v1. 2013. (Google Scholar)

Ca ̆lin, C.,Crasmareanu, M., η-Ricci solitons on Hopf hypersurfaces in complex space forms, Revue Roumaine de Mathematiques pures et appliques 57 (1) (2012), 55–63. (Google Scholar)

Chow, B. and Knopf, D., The Ricci Flow, An Introduction, AMS 2004. (Google Scholar)

Chodosh, O. and Fong,F.T.H., Rotational symmetry of conical Ka ̈hler-Ricci solitons, arxiv:1304.0277v2. 2013. (Google Scholar)

Cho, J.T., Kimura,M., Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J 61 (2) (2009), 205–212. (Google Scholar)

Ca ̆lin, C.,Crasmareanu, M., From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malaysian Math. Sci. Soc. 33 (3) (2010), 361–368. (Google Scholar)

Futaki, A., Ono, H., Wang, H., Transverse Ka ̈hler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Diff. Geom 83 (3) (2009), 585–636. (Google Scholar)

Ghosh, A., An η-Einstein Kenmotsu metric as a Ricci soliton, Publ. Math. Debrecen 2013. (Google Scholar)

Ghosh, A., Ricci Solitons and Contact Metric Manifolds, Glasgow Mathematical Journal 55 (1) (2013), 123–130. (Google Scholar)

Hamilton, R. S., Lectures on geometric flows, unpublished manuscript 1989. (Google Scholar)

Kundu, S., α-Sasakian 3-Metric as a Ricci Soliton, Ukrainian Mathematical Journal 65(6), November, 2013. (Google Scholar)

Patra, D.S., Rovenski, V., Almost η-Ricci solitons on Kenmotsu manifolds, European Journal of Mathematics 2021. (Google Scholar)

Patra, D.S., Ricci Solitons and Paracontact Geometry, Mediterranean Journal of Mathematics 16 Article number: 137 (2019). (Google Scholar)

Patra, D.S., Ricci solitons and Ricci almost solitons on para-Kenmotsu manifold, Bull. Korean Math. Soc. 56 (5) (2019), 1315–1325. (Google Scholar)

Schouten, J. A., Ricci Calculus, Springer-Verlag, Berlin, 2nd Ed.(1954), pp. 332. (Google Scholar)

Sharma, R., Certain results on K -contact and (κ, μ)-contact manifolds, J. Geom 89 (1-2) (2008), 138–147. (Google Scholar)

Yano, K., Integral Formulas in Riemannian Geometry, Marcel Dekker, New York 1970. [19] Zamkovoy, S., On Para-Kenmotsu Manifolds, Filomat 32:14 (2018), 4971–4980. (Google Scholar)


  • There are currently no refbacks.

ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr