# A new algorithm for variational inclusion problem

## Main Article Content

## Abstract

The target of this article is to modify the algorithm given by Fang and Huang [6]. The rate of convergence of our algorithm is faster than that of Fang and Huang [6]. A numerical example is given to justify our statement.

## Article Details

## References

[1] S. Adly, Perturbed algorithm and sensitivity analysis for a general class of variational inclusions, J. Math. Anal. Appl., 201 (1996) 609–630. Google Scholar

[2] R. Ahmad and Q. H. Ansari, An iterative algorithm for generalized nonlinear variational inclusions, Appl. Math. Lett., 13 (2000) 23–26. Google Scholar

[3] R. Ahmad, Q. H. Ansari and S. S. Irfan, Generalized variational inclusions and generalized resolvent equations in Banach spaces, Comput. Math. Appl., 29 (11-12) (2005) 1825–1835. Google Scholar

[4] H. Brezis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing, Amsterdam, The Netherlands, 1973. Google Scholar

[5] X. P. Ding, Perturbed proximal point algorithms for generalized quasi-variational inclusions, J. Math. Anal. Appl., 210 (1997) 88–101. Google Scholar

[6] Y. P. Fang and N. J. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput., 145 (2003) 795–803. Google Scholar

[7] Y. P. Fang and N. J. Huang, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett., 17 (2004) 647–653. Google Scholar

[8] F. Giannessi and A. Maugeri, Variational Inequalities and Nework Equilibriun Problems, Plenum, New York, 1995. Google Scholar

[9] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, Berlin, 1984. Google Scholar

[10] A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl., 185 (1994) 706–712. Google Scholar

[11] N. J. Huang, A new completely general class of variational inclusions with noncompact valued mappings, Comput. Math. Appl., 35 (10) (1998) 9–14. Google Scholar

[12] M. A. Noor, Some recent advances in variational inequalities (I), New Zealand J. Math., 26 (1997) 53–80. Google Scholar

[13] M. A. Noor, Some recent advances in variational inequalities (II), New Zealand J. Math., 26 (1997) 229–255. Google Scholar

[14] S. M. Robinson, Generalized equations and their solutions, part (I): basic theory, Math. Program. Stud., 10 (1979) 128–141. Google Scholar

[15] R. T. Rockafellar, Monotone operators and proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877–898. Google Scholar