Korean J. Math. Vol. 23 No. 1 (2015) pp.37-46
DOI: https://doi.org/10.11568/kjm.2015.23.1.37

On semi-IFP rings

Main Article Content

Hyo Jin Sung
Sang Jo Yun


We in this note introduce the concept of semi-IFP rings which is a generalization of IFP rings. We study the basic structure of semi-IFP rings, and construct suitable examples to the situations raised naturally in the process. We also show that the semi-IFP does not go up to polynomial rings.

Article Details


[1] E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470–473. Google Scholar

[2] H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363–368. Google Scholar

[3] G.F. Birkenmeier, H.E. Heatherly, E.K. Lee, Completely prime ideals and asso- ciated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S. K. Jain and S. T. Rizvi, World Scientific, Singapore-New Jersey-London-Hong Kong (1993), 102–129. Google Scholar

[4] Y.U. Cho, N.K. Kim, M.H. Kwon, Y. Lee, Classical quotient rings and ordinary extensions of 2-primal rings, Algebra Colloq. 13 (2006), 513–523. Google Scholar

[5] K.R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979. Google Scholar

[6] K.R. Goodearl, R.B. Warfield, JR., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press (1989). Google Scholar

[7] J.M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73–76. Google Scholar

[8] C. Huh, H.K. Kim, Y. Lee, Questions on 2-primal rings, Comm. Algebra 26 (1998), 595–600. Google Scholar

[9] C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative ring, Comm. Algebra 30 (2002), 751–761. Google Scholar

[10] K.Y. Ham, Y.C. Jeon, J.W. Kang, N.K. Kim, W.J. Lee, Y. Lee, S.J. Ryu and H.H. Yang, IFP rings and near-IFP rings, J. Korean Math. Soc. 45 (2008), 727–740. Google Scholar

[11] N.K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477–488. Google Scholar

[12] L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71–73. Google Scholar

[13] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43–60. Google Scholar