Korean J. Math. Vol. 23 No. 2 (2015) pp.231-248
DOI: https://doi.org/10.11568/kjm.2015.23.2.231

# Quadratic $\rho$-functional inequalities in Banach spaces: a fixed point approach

## Abstract

In this paper, we solve the following quadratic $\rho$-functional inequalities
\begin{eqnarray}
&&\nonumber \left\| f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y-z}{2}\right)+f\left(\frac{y-x-z}{2}\right) \right. \\
+f\left(\frac{z-x-y}{2}\right) -f(x) -f(y) -f(z) \right\| \\
&&\nonumber \leq \| \rho (f(x+y+z) + f(x-y-z) +f(y-x-z) \\
\end{eqnarray}
where $\rho$ is a fixed complex number with $|\rho|<\frac{1}{8}$,
and
\begin{eqnarray}
&& \nonumber \| f(x+y+z) + f(x-y-z)+f(y-x-z)\\
&& \leq
\left \| \rho \left( f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y-z}{2}\right) +f\left(\frac{y-x-z}{2}\right)\right.\right.\nonumber \\
\end{eqnarray}
where $\rho$ is a fixed complex number with $|\rho|<4$.

Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic $\rho$-functional inequalities (0.1) and (0.2) in complex Banach spaces.

## References

 T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66. Google Scholar

 L. C ̆adariu, V. Radu, Fixed points and the stability of Jensen’s functional equa- tion, J. Inequal. Pure Appl. Math. 4, no. 1, Art. ID 4 (2003). Google Scholar

 L. C ̆adariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346 (2004), 43–52. Google Scholar

 L. C ̆adariu, V. Radu, Fixed point methods for the generalized stability of func- tional equations in a single variable, Fixed Point Theory and Applications 2008, Art. ID 749392 (2008). Google Scholar

 P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86. Google Scholar

 J. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305–309. Google Scholar

 W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149–161. Google Scholar

 P. Gˇavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–43. Google Scholar

 A. Gil anyi, Eine zur Parallelogrammgleichung aquivalente Ungleichung, Aequationes Math. 62 (2001), 303-309. Google Scholar

 A. Gil anyi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707-710. Google Scholar

 D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224. Google Scholar

 G. Isac, Th. M. Rassias, Stability of ψ-additive mappings: Appications to non-linear analysis, Internat. J. Math. Math. Sci. 19 (1996), 219–228. Google Scholar

 D. Mihe ̧t, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567–572. Google Scholar

 C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Applications 2007, Art. ID 50175 (2007). Google Scholar

 C. Park, Generalized Hyers-Ulam-Rassias stability of quadratic functional equa- tions: a fixed point approach, Fixed Point Theory and Applications 2008, Art. ID 493751 (2008). Google Scholar

 C. Park, Y. Cho, M. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional equations, J. Inequal. Appl. 2007 (2007), Ar- ticle ID 41820, 13 pages. Google Scholar

 Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. Google Scholar

 V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91–96. Google Scholar

 J. R ̈atz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191–200. Google Scholar

 F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129. Google Scholar

 S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960. Google Scholar