Korean J. Math. Vol. 23 No. 3 (2015) pp.478-489
DOI: https://doi.org/10.11568/kjm.2015.23.3.478

Scientific understanding of the anisotropic universe in the warped products spacetime for aerospace power

Main Article Content

Jaedong Choi


We study the GMGHS spacetime to analyze anisotropic cosmology model which represents homogeneous but anisotropically expanding(contracting)cosmology. In this paper we investigate the solution of GMGHS spacetime in form of doubly warped products possessing warping functions and find the Ricci curvature associated with three phases in the evolution of the universe.

Article Details

Supporting Agencies

This work was financial supported from the Korea Air Force Academy Grant (KAFA 15-04).


[1] J. K. Beem, P. E. Ehrlich and K. Easley, Global Lorentzian Geometry (Marcel Dekker Pure and Applied Mathematics, New York, 1996. Google Scholar

[2] J. Choi, Multiply warped products with nonsmooth metrics, J. Math. Phys. 41 (2000), 8163–8169. Google Scholar

[3] S.T. Hong, J. Choi and Y.J. Park, (2+1) dimensional black holes in warped products, Gen. Rel. Grav. 35 (2003). Google Scholar

[4] J. Choi and S.T. Hong, Warped product approach to universe with non-smooth scale factor, J. Math. Phys. 45 (2004), 642. Google Scholar

[5] S.T. Hong, J. Choi and Y.J. Park, Local free-fall temperature of Gibbons-Maeda- Garfinkle-Horowitz-Strominger black holes Nonlinear Analysis 63, e493 (2005). Google Scholar

[6] J. Demers, R. Lafrance, and R.C. Meyers, Black hole entropy without brick walls, Phys. Rev. D 52, 2245–2253 (1995). Google Scholar

[7] A. Ghosh and P. Mitra, Entropy for extremal Reissner-Nordstrom black holes, Phys. Lett. B 357, 295–299 (1995). Google Scholar

[8] S.P. Kim, S.K. Kim, K.S. Soh and J.H. Yee, Remarks on renormalization of black hole entropy, Int. J. Mod. Phys. A 12 (1997), 5223–5234. Google Scholar

[9] G. Cognola and P. Lecca, Electromagnetic fields in Schwarzschild and Reissner- Nordstrom geometry, Phys. Rev. D 57 (1998), 1108–1111. Google Scholar

[10] D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991), 3140. Google Scholar

[11] G.W. Gibbons and K. Maeda, Black holes and membranes in higher-dimensional theories with dilaton fields, Nucl.Phys. B 298 (1988), 741. Google Scholar

[12] A.H. Guth, Inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981), 347–356. Google Scholar

[13] R. Kantowski and R.K. Sachs, Some spatially homogeneous anisotropic relativis- tic cosmological models, J. Math. Phys. 7 (1966), 443. Google Scholar

[14] J. Khoury, B.A. Ovrut, N. Seiberg, P.J. Steinhardt and N. Turok, From big crunch to big bang, Phys. Rev. D 65 (2002), 086007. Google Scholar

[15] H. Reissner, U ̈ber die eigengravitation des elektrischen felds nach der Einstein- shen theorie, Ann. Phys. 50 (1916), 106–120. Google Scholar

[16] G. Nordstr ̈om, On the energy of the gravitational field in Einstein’s theory, Proc. Kon. Ned. Akda. Wet. 20 (1918), 1238–1245. Google Scholar

[17] R. M. Wald, General Relativity University of Chicago Press, Chicago, 1984. Google Scholar