Korean J. Math. Vol. 24 No. 3 (2016) pp.335-344
DOI: https://doi.org/10.11568/kjm.2016.24.3.335

Quantitative estimates for generalized two dimensional Baskakov operators

Main Article Content

Neha Bhardwaj
Naokant Deo


In this paper, we obtain quantitative estimates for generalized double Baskakov operators. We calculate global results for these operators using Lipschitz-type spaces and estimate the error using modulus of continuity.

Article Details


[1] Adell J.A., Bada F.G. and Cal J. de la, On the iterates of some Bernstein type operators, J. Math. Anal. Appl. 209 (1997), 529–541. Google Scholar

[2] Baskakov V.A., An example of a sequence of linear positive operators in the spaces of continuous functions, Dokl. Akad. Nauk SSSR 113 (1957), 249–251. Google Scholar

[3] Becker M., Global approximation theorems for SzszMirakjan and Baskakov op- erators in polynomial weight spaces, Indiana Univ. Math. J. 27 (1978), 127–142. Google Scholar

[4] Deo N., On the iterative combinations of Baskakov operators, General Mathematics, 15 (11) (2007), 51–58. Google Scholar

[5] Deo N. and Bhardwaj N., On the degree of approximation by modified Baskakov operators, Lobachevskii J. Math. 32 (1) (2011), 16–22. Google Scholar

[6] Ditzian Z. and Totik V., Moduli of Smoothness, Springer-Verlag, Berlin, 1987. Google Scholar

[7] Guo F., On convergence rate of approximation for two-dimensional Baskakov operators, Analysis in Theory and Applications, 19 (3) (2003), 273–279. Google Scholar

[8] O zarslan M.A. and Aktu glu H., Quantitative Global Estimates for Generalized Double Szasz-Mirakjan Operators, Journal of Applied Mathematics, 13 (2013). Google Scholar

[9] O ̈zarslanM.A.andDumanO.,Anewapproachinobtainingabetterestimation in approximation by positive linear operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math Stat., 58 (1) (2009), 17–22. Google Scholar

[10] Szasz O., Generalization of S. Bernstein’s polynomials to the infinite interval, J. Research Nat. Bur. Standards, 45 (1950), 239–245. Google Scholar