Korean J. Math. Vol. 25 No. 1 (2017) pp.117-126
DOI: https://doi.org/10.11568/kjm.2017.25.1.117

Subnormality of the weighted Ces\`aro operator $ C_h \in l^2(h) $

Main Article Content

Abderazak Hechifa
Abdelouahab Mansour


The subnormality of some classes of operators is a very interesting property. In this paper, we prove that the weighted Ces\`aro operator $ C_h \in \ell^2(h) $ is subnormal and we described completely the set of the extended eigenvalues for the weighted Ces\`aro operator, some other important results are also given.

Article Details

Supporting Agencies

Operator theory laboratory Eloued university Algeria.


[1] Animikh Biswas, Alan Lambert and SrdjanPetrovic. Extended eigenvalues and the Volterra operator. Glasg. math. J. 44 (3) (2002), 521–534. Google Scholar

[2] Animikh Biswas and Srdjan Petrovic. On extended eigenvalues of operators. Integral Equtions Operator Theory 55 (2) (2006), 233–248. Google Scholar

[3] Paul S. Bourdon and Joel H. Shapiro. Intertwining relations and extended eigen- values for analytic Toeplitz operators. Illinois J. Math. 52 (3) (2008), 1007–1030. Google Scholar

[4] Arlen Brown, P.R.Halmos and A.L.Shields, Ces`aro operators, Acta Sci.Math. (Szeged) 26 (1965), 125–137. Google Scholar

[5] P.R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand Company, Inc.Princeton, New Jerse, (1967) . Google Scholar

[6] M. Lacruz, F. Saavedra, S. Petrovic and O. Zabeti. Extended eigenvalues for Ces`aro operators, J. Math. Anal. Appl. 429 (2015), 623–657. Google Scholar

[7] A. L. Shields and L. J. Wallen. The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1970/1971), 777–788. Google Scholar

[8] Tavan T. Trent, New conditions for subnormality, Pacific Journal of Mathematics, Vol. 93, No. 2, April, 1981. Google Scholar

[9] Julia Wagner, On the cesro operator in weighted l2sequence space and the generalized concept of normality, Ann. Funct. Anal. 4 (2) (2013), 1–11. Google Scholar