# Quantum modularity of mock theta functions of order 2

## Main Article Content

## Abstract

## Article Details

## References

[1] G. E. Andrews, Mordell integrals and Ramanujan’s “lost" notebook, Analytic number theory, (Philadelphia, Pa., 1980), pp. 1018, Lecture Notes in Math., 899, Springer, Berlin-New York, 1981. Google Scholar

[2] K. Bringmann, A. Folsom, and R. C. Rhoades, Partial theta functions and mock modular forms as q-hypergeometric series, Ramanujan J. 29 (2012), 295-310. Google Scholar

[3] K. Bringmann and L. Rolen, Radial limits of mock theta functions, Res. Math. Sci. 2 (2015), 2–17. Google Scholar

[4] A. Folsom, S. Garthwaite, S.-Y. Kang, H. Swisher and S. Treneer, Quantum mock modular forms arising from eta-theta fnctions, Res. Number Theory 2 (2016). Google Scholar

[5] A. Folsom, K. Ono and R. C. Rhoades, Mock theta functions and quantum modular forms, Forum Math. Pi 1 (2013), e2, 27p. Google Scholar

[6] B. Gordon and R. J. McIntosh, A survey of classical mock theta functions, Par- titions, q-Series, and Modular Forms, pp. 95–144, Springer, Berlin, 2012. Google Scholar

[7] K. Hikami, Mock (false) theta functions as quantum invariants, Regul. Chaotic Dyn. 10 (2005), 509–530. Google Scholar

[8] S.-Y. Kang, Mock Jacobi forms in basic hypergeometric series, Compos. Math. 145 (3) (2009), 553–565. Google Scholar

[9] S.-Y. Kang and H. Swisher, Mock theta functions of order 2 and their shadow computations, Bull. Korean Math. Soc. (to appear). Google Scholar

[10] R. Lawrence and D. Zagier, Modular forms and quantum invariants of 3- manifolds, Asian J. Math. 3 (1999) 93–108. Google Scholar

[11] R. J. McIntosh, Second order mock theta functions, Canad. Math. Bull. 50 (2) (2007), 284–290. Google Scholar

[12] R. J. McIntosh, The H and K family of mock theta functions, Canad. J. Math. 64 (2012), 935–960. Google Scholar

[13] R. J. McIntosh, On the universal mock theta function g2 and Zwegers’ μ- function, Proceedings of Alladi60 Conference (2016), http://qseries.org/ alladi60/talks/mcintosh/ Google Scholar

[14] K. Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, Current developments in mathematics 2008 (2009), 347–454. Google Scholar

[15] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988. Google Scholar

[16] D. Zagier, Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann), S`eminaire Bourbaki, Vol. 2007/2008. Astrisque No. 326 (2009), Exp. No. 986, viiviii, 143164 (2010). Google Scholar

[17] D. Zagier, Quantum Modular Forms, In Quanta of Maths: Conference in honor of Alain Connes, Clay Math. Proc. 11 (2010), Amer. Math. Soc., Providence, RI, 659–675. Google Scholar

[18] S. P. Zwegers, Mock Theta Functions Thesis, Utrecht, 2002, https://dspace. library.uu.nl/bitstream/handle/1874/878/full.pdf?sequence=11. Google Scholar

[19] S. P. Zwegers, Multivariable Appell functions, 2010 http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid= 5753340C9807A361CBD13F25FD0DEA7D?doi=10.1.1.164.6121&rep= rep1&type=pdf. Google Scholar