Korean J. Math. Vol. 25 No. 4 (2017) pp.537-554
DOI: https://doi.org/10.11568/kjm.2017.25.4.537

# Surfaces foliated by ellipses with constant Gaussian curvature in Euclidean 3-space

## Abstract

In this paper, we study the surfaces foliated by ellipses in three dimensional Euclidean space $\mathbf{E}^3$. We prove the following results: \textbf{(1)} The surface foliated by an ellipse have constant Gaussian curvature $K$ if and only if the surface is flat, i.e. $K=0$. \textbf{(2)} The surface foliated by an ellipse is a flat if and only if it is a part of generalized cylinder or part of generalized cone.

## References

 Ali A.T., Position vectors of general helices in Euclidean 3-space, Bull. Math. Anal. Appl. 3 (2) (2010), 198–205. Google Scholar

 Ali A.T., Position vectors of slant helices in Euclidean 3-space, J. Egyptian Math. Soc. 20 (1) (2012), 1–6. Google Scholar

 Delaunay C., Sur la surface de r evolution dont la courbure moyenne est constante, J. Math. Pure Appl. 6 (1841), 309-320. Google Scholar

 Enneper A., Ueber die cyclischen Fl ̈achen, Nach. K ̋onigl. Ges. d. Wisseensch. G ̋ottingen, Math. Phys. Kl (1866), 243–249. Google Scholar

 Enneper A., Die cyclischen Fl ̈achen, Z. Math. Phys. 14 (1869), 393–421. Google Scholar

 Lo pez R. Cyclic surfaces of constant Gauss curvature, Houston J. Math. 27 (4) (2001), 799-805. Google Scholar

 L opez R. On linear Weingarten surfaces, Int. J. Math. 19 (2008), 439-448. Google Scholar

 Lo pez R. Special Weingarten surfaces foliated by circles, Monatsh. Math. 154 (2008), 289-302. Google Scholar

 Nitsche J. C. C., Cyclic surfaces of constant mean curvature, Nachr. Akad. Wiss. Gottingen Math. Phys. II 1 (1989), 1–5. Google Scholar

 Riemann, B. U ̈ber die Fla ̈chen vom kleinsten Inhalt bei gegebener Begrenzung, Abh. K ̈onigl Ges. d. Wissensch. G ̈ottingen, Mathema. C1, 13 (1868), 329–333. Google Scholar