# On strong metric dimension of zero-divisor graphs of rings

## Main Article Content

## Abstract

## Article Details

## Supporting Agencies

## References

[1] M. Aijaz and S. Pirzada, On annihilating ideal graphs of commutative rings, Asian-European J. Math. to appear. Google Scholar

[2] S. Akbari and A. Mohammadian, On zero divisor graphs of a commutative ring, J. Algebra 274 (2004), 847–855. Google Scholar

[3] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (7) (2008) 2706–2719. Google Scholar

[4] D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston, The Zero-Divisor Graph of a Commutative Ring, II, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 220 (2001), 61–72. Google Scholar

[5] D. F. Anderson and P. Livingston, The zero divisor graph of a commutative ring, J. Algebra 217 (1999), 434–447. Google Scholar

[6] D. F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003), 221–241. Google Scholar

[7] N. Ashrafi, H. R. Maimani, M. R. Pournaki and S. Yassemi, Unit graphs associated with rings, Comm. Algebra 38 (2010), 2851–2871. Google Scholar

[8] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison- Google Scholar

[9] Wesley, Reading, MA (1969).[9] A. Azimi, A. Erfanian, and M. Farrokhi D.G., The Jacobson graph of commutative rings, J. Algebra Appl. 12 (3) (2013), 1250179. Google Scholar

[10] M. Baziar, E. Momtahan, and S. Safaeeyan, A zero-divisor graph of modules with respect to their (first) dual, J. Algebra Appl. 12 (3) (2013), 93–106. Google Scholar

[11] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208–226. Google Scholar

[12] J. Cceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara and D. R. Wood, On the metric dimension of cartesian products of graphs, SIAM J. Discrete Math. 21 (2) (2007), 423–441. Google Scholar

[13] G. Chatrand, L. Eroh, M. A. Johnson and O.R. Ollermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), 99–113. Google Scholar

[14] F. Harary, and R. A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191–195. Google Scholar

[15] I. Kaplansky, Commutative Rings, rev. ed., Univ. of Chicago Press, Chicago, (1974). Google Scholar

[16] Ortrud R. Oellermann and Joel Peters-Fransen, The strong metric dimension of graphs and digraphs, Discrete Appl. Math. 155 (2007), 356–364. Google Scholar

[17] S. Pirzada, An Introduction to Graph Theory, University Press, Orient Black-swan, Hyderabad, India, (2012). Google Scholar

[18] S. Pirzada and M. Imran Bhat, Computing metric dimension of compressed zero divisor graphs associated to rings, Acta Univ. Sap. Mathematica 10 (2) (2018), 298–318. Google Scholar

[19] S. Pirzada and Rameez Raja and S. P. Redmond, On locating numbers and codes of zero-divisor graphs associated with commutative rings, J. Algebra Appl. 13 (7) (2014), 1450047. Google Scholar

[20] S. Pirzada, M. Aijaz and S. P. Redmond, Upper dimension and bases of zero divisor graphs of commutative rings, AKCE International J. Graphs Comb. to appear. Google Scholar

[21] S. Redmond, The zero-divisor graph of a non-commutative ring, International Google Scholar

[22] J. Comm. Rings 1 (4) (2002) 203–211. Google Scholar

[23] S. P. Redmond, An Ideal based zero divisor graph of a commutative ring, Comm. Algebra 31 (9) (2003), 4425–4443. Google Scholar

[24] S. P. Redmond, Cut vertices and degree one vertices of zero-divisor graphs, Comm. Algebra 40 (8) (2012), 2749–2756. Google Scholar

[25] S. P. Redmond, Recovering rings from zero-divisor graphs, J. Algebra Appl. 12 (8) (2013), 1350047 (9 pages). Google Scholar

[26] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (7) (2011), 2338–2348. Google Scholar

[27] D. B. West, Introduction Graph Theory, 2nd ed. USA: Prentice Hall, (2001). Google Scholar