Korean J. Math. Vol. 27 No. 3 (2019) pp.613-627
DOI: https://doi.org/10.11568/kjm.2019.27.3.613

Edge Szeged indices of Benzene ring

Main Article Content

Abdul Qudair Baig
Muhammad Naeem
Muhammad Mushtaq
Wei Gao


Consider a connected molecular graph $G=(V,E)$ where $V$ is the set of vertices and $E$ is the set of edges. In $G$, vertices represent the atoms and edges represent the covalent bonds between atoms. In graph $G$, every edge (say) $e=uv$ will be connected by two atoms $u$ and $v$. The edge Szeged index is a topological index which has been introduced by Ivan Gutman. In this paper, we have computed edge Szeged indices of a hydrocarbon family called Benzene ring and is denoted by $(BR)_{n\times n}$.

Article Details


[1] K. Ch. Dasa, I. Gutmanb, and B. Furtulab, Survey on Geometric–Arithmetic Indices of Graphs, MATCH Commun. Math. Comput. Chem. 65 (2011), 595– 644 Google Scholar

[2] A. Das, G. Domotor, I. Gutman, S. Joshi, S. Karmarkar, D. Khaddar, T. Khaddar, P.V. Khadikar, L. Popovic, N.S. Sapre, N. Sapre, and A. Shirhatti, A Comparative Study of the Wiener, Schultz and Szeged Indices of Cycloalkanes, J. Serb. Chem. Soc. 62 (1997), 235–239. Google Scholar

[3] H. Deng and J. Hou, PI indices of nanotubes SC4C8[q; 2p] covering by C4 and C8, MATCH Commun. Math. Comput. Chem. 57, (2007), 503–516. Google Scholar

[4] A. A. Dobrynin, I. Gutman, S. Klavzar, and P. Zegiret, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002), 247–294. Google Scholar

[5] T. Doslic, I. Martinjak, R. Skrekovski, S. T. Spuzevic, and I. Zubac, Mostar index, J. Math. Chem. 56 (2018), 2995–3013. Google Scholar

[6] M. Eliasi and B. Taeri, Szeged index of armchair polyhex nanotubes, MATCH Commun. Math. Comput. Chem. 59 (2008), 437–450. Google Scholar

[7] I. Gutman and A. R. Ashrafi, The edge version of the Szeged index, Croat. Chem. Acta 81 (2008), 263–266. Google Scholar

[8] I. Gutman,Y. N. Yeh, S. L. Lee, and Y. L. Luo, Some Recent Results in the Theory of the Wiener Number, Indian J. Chem. 1993, 32A, 651–661 Google Scholar

[9] I. Gutman and J.H. Potgieter, Wiener Index and Intermolecular Forces, J. Serb.Chem. Soc. 62 (1997), 185–192. Google Scholar

[10] A. Heydari and B. Taeri, Szeged index of TUC4C8(R) nanotubes, MATCH Commun. Math. Comput. Chem. 57 (2007), 463–477. Google Scholar

[11] A. Iranmanesh and O. Khormali, Szeged index of HAC5C7[r,p] nanotubes, J. Comput. Theor. Nanosci., in press. Google Scholar

[12] S. Karmarkar, S. Karmarkar, S. Joshi, A. Das, and P.V Khadikar, Novel Application of Wiener vis-a-vis Szeged Indices in Predicting Polychlorinated Biphenyls in the Environment, J. Serb. Chem. Soc. 62 (1997), 227–234. Google Scholar

[13] P.V. Khadikar, S. Karmarkar, S. Joshi, and I. Gutman, Estimation of the Protonation Constants of Salicylhydroxamic Acids by Means of the Wiener Topological Index, J. Serb. Chem. Soc. 61 (1996), 89–95. Google Scholar

[14] H. Wiener, Stractural determination of paraffin boiling points, J. Amer. Chem. Soc., 69 (1947), 17–20. Google Scholar