Korean J. Math. Vol. 28 No. 2 (2020) pp.159-168
DOI: https://doi.org/10.11568/kjm.2020.28.2.159

Hyers-Ulam-Rassias stability of a quadratic-cubic-quartic functional equation

Main Article Content

Yang-Hi Lee


In this paper, we investigate Hyers-Ulam-Rassias stability of a functional equation
\begin{align*} f(&x +ky) + f(x-ky) - k^2f(x+y) - k^2f(x-y) \nonumber \\
&\ +2(k^2-1)f(x)+ (k^2+k^3)f(y)+ (k^2-k^3)f(-y)-2f(ky)=0.

Article Details


[1] J. Baker, A general functional equation and its stability, Proc. Natl. Acad. Sci. 133 (6) (2005), 1657–1664. Google Scholar

[2] P. Gˇavruta, A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436. Google Scholar

[3] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224. Google Scholar

[4] M. E. Gordji, H. Khodaei, and R. Khodabakhsh, General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces, U.P.B. Sci. Bull. Series A 72 (3) (2010), 69–84. Google Scholar

[5] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. Google Scholar

[6] S.M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960. Google Scholar