Korean J. Math. Vol. 28 No. 2 (2020) pp.257-273
DOI: https://doi.org/10.11568/kjm.2020.28.2.257

Quasi hemi-slant submanifolds of cosymplectic manifolds

Main Article Content

Rajendra Prasad
Sandeep Kumar Verma
Sumeet Kumar
Sudhakar Kumar Chaubey


We introduce and study quasi hemi-slant submanifolds of almost contact metric manifolds (especially, cosymplectic manifolds) and validate its existence by providing some non-trivial examples. Necessary and sufficient conditions for integrability of distributions, which are involved in the definition of quasi hemi-slant submanifolds of cosymplectic manifolds, are obtained. Also, we investigate the necessary and sufficient conditions for quasi hemi-slant submanifolds of cosymplectic manifolds to be totally geodesic and study the geometry of foliations determined by the distributions.

Article Details


[1] A. Ali, and C. Ozel, Geometry of warped product pointwise semi-slant submanifolds of cosymplectic manifolds and its applications, Int. J. Geom. Meth. Mod. Phy. 14 (2017), 1750042. Google Scholar

[2] A. Ali, S. Uddin and W. A. O. Othmam, Geometry of warped product pointwise semi-slant submanifold in Kaehler manifolds, Filomat 31 (2017), 3771–3788. Google Scholar

[3] G. Ayar and S. K. Chaubey, M-projective curvature tensor over cosymplectic manifolds, Differential Geometry - Dynamical Systems. 21 (2019), 23–33. Google Scholar

[4] M. Barbero-Linan, et al.: Unified formalison for nonautonomous mechanical systems. J. Math. Phys. 49 ()2008, 062902–062914. Google Scholar

[5] A. Benjancu and N. Papaghuic, Semi-invariant Submanifolds of a Sasakian manifold, An. St. Univ. AI. I. Cuza. Iasi. Math. (N.S.) 27 (1981), 163–170. Google Scholar

[6] A. M. Blaga, Invariant, anti-invariant and slant submanifolds of para-Kenmotsu manifold, BSG Publ. 24 (2017), 125–138. Google Scholar

[7] D. E. Blair, Contact manifold in Riemannian geometry, Lecture notes in Math. 509 Springer-Verlag, New-York, (1976). Google Scholar

[8] D. E. Blair and S. I. Goldberg, Topology of almost contact manifolds, J. Differential Geometry 1 (1967), 347–354. Google Scholar

[9] J. L. Cabrerizo, A. Carriazo and L. M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasg. Math. J. 42 (2000), 125–138. Google Scholar

[10] B. Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit, Leuven, (1990). Google Scholar

[11] D. Chinea, M. De-Leon, and J. C. Marrero, Topology of cosymplectic manifolds, J. Math. Pures Appl. (9) 72 (1993), 567–591. Google Scholar

[12] M. De-Leon, E. Merino, J. A. Oubina, P. R. Rodrigues and M. Salgado, Hamiltonian system on K−cosymplectic manifolds, J. Math. Phys. 39(1998), 876–893. Google Scholar

[13] U. C. De and A. Sarkar, On pseudo-slant submanifolds of trans-Sasakian manifolds, Proc. Esto. Acad. sci. 60 (2011), 1–11. Google Scholar

[14] U. C. De and A. A. Shaikh, Complex manifolds and Contact manifolds, Narosa Publ. House, (2009). Google Scholar

[15] M. Kon, Remarks on anti-invariant submanifolds of a Sasakian manifold, Tensor (N.S.) 30 (1976), 239–245. Google Scholar

[16] J. W. Lee and B. Sahin, Pointwise slant submersions, Bull Korean Math Soc. 51 (2014), 1115–1126. Google Scholar

[17] A. Lotta, Slant submanifold in contact geometry, Bull. Math. Soc. Romanie 39 (1996), 183–198. Google Scholar

[18] N. Papaghuic, Semi-slant submanifold of Kaehlerian manifold, An. St. Univ. AI. I. Cuza. Iasi. Math.(N.S.) 9 (1994), 55–61. Google Scholar

[19] K. S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc. 50 (2013), 951–962. Google Scholar

[20] B. Sahin, Warped product submanifolds of a Kaehler manifold with a slant factor, Ann. Pol. Math. 95 (2009), 107–126. Google Scholar

[21] B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. math. de la Soc. des Sciences Math. de Roumanie 54 (2011), 93–105. Google Scholar

[22] F. Sahin, Cohomology of hemi-slant submanifolds of a Kaehler manifolds, J. Adv. Studies Topology 5 (2014), 27–31. Google Scholar

[23] M. H. Shahid, et al., Slant submanifolds of cosymplectic manifold, Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica 50 (2004), 33–50. Google Scholar

[24] S. S. Shukla and A. Yadav, Screen Pseudo-Slant Lightlike Submanifolds of Indefinite Sasakian Manifolds, Mediterranean Journal of Mathematics 13 (2016), 789–802. Google Scholar

[25] S. Uddin, B. Y. Chen and F. R. Al-Solamy, Warped product bi-slant immersion in Kaehler manifolds, Mediterr. J. Math. 14 (2017), 14–95. Google Scholar

[26] S. K. Yadav and S. K. Chaubey, Certain results on submanifolds of generalized Sasakian-space-forms, Honam Mathematical J. 42 (1) (2020), 123-–137. Google Scholar