Korean J. Math.  Vol 28, No 3 (2020)  pp.613-621
DOI: https://doi.org/10.11568/kjm.2020.28.3.613

Solution and stability of an $n$-variable additive functional equation

Vediyappan Govindan, Jung-Rye Lee, Sandra Pinelas, Abdul Rahim Noorsaba, Ganapathy Balasubramanian

Abstract


In this paper,  we  investigate the general solution and the  Hyers-Ulam  stability of $n$-variable additive functional equation of the form$$\Im\left(\sum_{i=1}^{n}(-1)^{i+1}x_i\right)=\sum_{i=1}^{n}(-1)^{i+1}\Im (x_i),$$where $n$ is a positive integer with $n \ge 2$,  in Banach spaces by using the direct method.


Keywords


Additive functional equation; Hyers-Ulam stability.

Subject classification

39B52, 32B72, 32B82, 46H25.

Sponsor(s)



Full Text:

PDF

References


J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989. (Google Scholar)

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66. (Google Scholar)

E. Baktash, Y. Cho, M. Jalili, R. Saadati and S. M. Vaezpour, On the stability of cubic mappingsand quadratic mappings in random normed spaces, J. Inequal. Appl. 2008 (2008), Article ID 902187. (Google Scholar)

I. Chang, E. Lee and H. Kim, On the Hyers-Ulam-Rassias stability of a quadratic functional equations, Math. Inequal. Appl. 6 (2003), 87–95. (Google Scholar)

P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86. (Google Scholar)

S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64. (Google Scholar)

D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, vol. 34, Progress in Nonlinear Differential Equations and Their Applications, Birkh ̈auser, Boston, 1998. (Google Scholar)

M. Eshaghi Gordji and H. Khodaie, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Anal. 71 (2009), 5629–5643. (Google Scholar)

K. Jun and H. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 267–278. (Google Scholar)

C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach alge- bras, Bull. Sci. Math. 132 (2008), 87–96. (Google Scholar)

C. Park and J. Cui, Generalized stability of C∗-ternary quadratic mappings, Abs. Appl. Anal. 2007 (2007), Article ID 23282. (Google Scholar)

C. Park and A. Najati, Homomorphisms and derivations in C∗-algebras, Abs. Appl. Anal. 2007 (2007), Article ID 80630. (Google Scholar)

Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978), 297–300. (Google Scholar)

Th. M. Rassias, On the stability of the functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264–284. (Google Scholar)

Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan, London, 2003. (Google Scholar)

S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964. (Google Scholar)


Refbacks

  • There are currently no refbacks.


ISSN: 1976-8605 (Print), 2288-1433 (Online)

Copyright(c) 2013 By The Kangwon-Kyungki Mathematical Society, Department of Mathematics, Kangwon National University Chuncheon 21341, Korea Fax: +82-33-259-5662 E-mail: kkms@kangwon.ac.kr