Korean J. Math. Vol. 28 No. 3 (2020) pp.555-571
DOI: https://doi.org/10.11568/kjm.2020.28.3.555

Characterizations for totally geodesic submanifolds of $(\kappa,\mu)$-paracontact metric manifolds

Main Article Content

Mehmet Atceken
Pakize Uygun


The aim of the present paper is to study pseudoparallel invariant submanifold of a $(\kappa,\mu)$-paracontact metric manifold. We consider pseudoparallel, Ricci-generalized pseudoparallel and 2-Ricci generalized pseudo parallel invariant submanifolds of a $(\kappa,\mu)$-paracontact metric manifold and we obtain new results contribute to geometry.

Article Details


[1] S. K. Hui., V. N. Mishra, T., Pal and Vandana, Some Classes of Invariant Submanifolds of (LCS)n-Manifolds, Italian J. of Pure and Appl. Math. No:39, (2018), 359–372. Google Scholar

[2] V. Venkatesha and S. Basavarajappa, Invariant Submanifolds of LP-Sasakian Manifolds, Khayyam J. Math. 6 (1) (2020), 16–26. Google Scholar

[3] S. Sular., C. O ̈zgu ̈r and C. Murathan, Pseudoparallel Anti-Invaraint Subman- ifolds of Kenmotsu Manifolds, Hacettepe J. of Math. and Stat. 39 (4) (2010), 535–543. Google Scholar

[4] B. C. Montano., L. D. Terlizzi and M.M Tripathi, Invariant Submanifolds of Contact (κ, μ)-Manifolds, Glasgow Math. J. 50 (2008), 499–507. Google Scholar

[5] M. S., Siddesha and C. S Bagewadi, Invariant Submanifolds of (κ, μ)-Contact Manifolds Admitting Guarter Symmetric Metric Connection, International J. of Math. Trends and Tech(IJMTT) 34 (2) (2016). Google Scholar

[6] S. Koneyuki and F. L. Williams, Almost paracontact and parahodge Structures on Manifolds, Nagoya Math. J. 90 (1985), 173–187. Google Scholar

[7] S. Zamkovay, Canonical Connections on Paracontact Manifolds, Ann. Globanal Geom. 36 (2009), 37–60. Google Scholar

[8] B. C. Montano., I. K. Erken and C. Murathan, Nullity Conditions in Paracontact Geometry, Differential Geom Appl. 30 (2010), 79–100. Google Scholar

[9] D. G. Prakasha and K. Mirji, On (κ,μ)-Paracontact Metric Manifolds, Gen. Math. Notes. 25 (2) (2014), 68–77. Google Scholar

[10] S. Zamkovay, Canonical Connections on Paracontact Manifolds, Ann. Glob. Anal. Geom. 36 (2009), 68–77. Google Scholar

[11] M. At ̧ceken., U ̈. Yildirim and S. Dirik, Semiparallel Submanifolds of a Normal Paracontact Metric Manifold, Hacet. J. Math. Stat. 48 (2) (2019),501–509. Google Scholar

[12] D. E. Blair., T. Koufogiorgos., B. J. Papatoniou, Contact Metric Manifolds Satisfying a Nullity Conditions, Israel J. Math. 91 (1995), 189–214. Google Scholar