Korean J. Math. Vol. 29 No. 4 (2021) pp.775-784
DOI: https://doi.org/10.11568/kjm.2021.29.4.775

$L_P-$type inequalities for derivative of a polynomial

Main Article Content

Irfan Ahmad Wani
Mohammad Ibrahim Mir
Ishfaq Nazir


For the polynomial $P(z)$ of degree $n$ and having all its zeros in $|z| \leq k$, $k \geq 1$, Jain [6] proved that

$$ \begin{align*} \max_{|z|=1} |P^{\prime}(z)|\geq n \frac{|c_0| + |c_n|k^{n+1}}{|c_0|(1+k^{n+1}) + |c_n| ( k^{n+1} + k^{2n})} \max_{|z|=1}|P(z)| . \end{align*}$$

In this paper, we extend above inequality to its integral analogous and there by obtain more results which extended the already proved results to integral analogous.

Article Details


[1] A. Aziz, Integral mean estimates for polynomials with restricted zeros, J. Approx. 55 (1988), 232–238. Google Scholar

[2] S. Bernstein, Sur Àe ordre de la meilleure approximation des functions continues par des poly- nomes de degrÀe donnÀe, Mem. Acad. R. Belg., 4 (1912), 1–103. Google Scholar

[3] N. K. Govil, On the derivative of a polynomial , Proc. Amer. Math. Soc., 41 (1973), 543–546. Google Scholar

[4] N. K. Govil, Some inequalities for derivatives of polynomials, J. Approx. Theory, 66 (1991), 29–35. Google Scholar

[5] G. H. Hardy, The mean value of the modulus of an analytic function, Proc. London Math. Soc., 14 (1915), 319–330. Google Scholar

[6] V. K. Jain,On the derivative of a polynomial, Bull. Math. Soc. Sci. Math. Roumanie Tome, 59 (2016), 339–347. Google Scholar

[7] M.A. Malik, On the derivative of a polynomial; j. Lond. Math. Soc. 1 (1969), 57–60. Google Scholar

[8] M. A. Malik, An integral mean estimate for polynomials, Proc. Amer. Math. Soc., 91 (1984), 281–284. Google Scholar

[9] G. V. Milovanovi c, D. S. Mitrinovi c and T. M. Rassias, Topics in Polynomials, Extremal problems, Inequalities, Zeros , World Scientific, Singapore, (1994). Google Scholar

[10] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, (2002). Google Scholar

[11] P. Tura n, U ber die Ableitung von Polynomen Compos. Math. 7 , 89-95(1939) Google Scholar

[12] E. C. Titchmarsh, The theory of functions, The English Book Society and Oxford University Press, London. 1962. Google Scholar