Korean J. Math. Vol. 26 No. 1 (2018) pp.1-7
DOI: https://doi.org/10.11568/kjm.2018.26.1.1

Serial execution Josephus problem

Main Article Content

Jang-Woo Park
Ricardo Teixeira


In this paper, we will study a generalized version of Josephus where a serial execution occurs at each iteration and give a non-recursive formula for the initial positions of survivors.

Article Details

Supporting Agencies

School of Arts and Sciences University of Houston-Victoria


[1] W. Aragon, A Book in English (2011). Google Scholar

[2] L. Halbeisen and N. Hungerbuhler, The Josephus Problem, Journal de Theorie des Nombres de Bordeaux, 9 (1997), 303–318. Google Scholar

[3] F. Jakobczyk, On the Generalized Josephus Problem, Glasgow Mathematical Journal 14 (1973), 168–173. Google Scholar

[4] Titus Flavius Josephus, The Jewish War. 75. ISBN 0-14-044420-3. Google Scholar

[5] A.M. Odlyzko and H.S. Wilf, Functional iteration and the Josephus problem, Glasgow Mathematical Journal 33 (2) (1991), 235–240. Google Scholar

[6] W.J. Robinson, The Josephus Problem, The Mathematical Gazette 44 (347) (1960), 47–52. Google Scholar

[7] F. Ruskey and A. Williams, The Feline Josephus Problem, Theory of Computing Systems 50 (1) (2012), 20–34. Google Scholar

[8] A. Shams-Baragh, Formulation of the Extended Josephus Problem, National Computer Conference December 2002). Google Scholar

[9] S. Sharma, R. Tripathi, S. Bagai, R. Saini, and N. Sharma, Extension of the Josephus Problem with Varying Elimination Steps, DU Journal of Undergradu- ate Research and Innovation 1 (3) (2015), 211–218. Google Scholar

[10] R. Teixeira and J.W. Park, Mathematical Explanation and Generalization of Penn and Teller’s Love Ritual Magic Trick, Journal of Magic Research 8 (2017), 21–32. Google Scholar

[11] N. Theriault, Generalizations of the Josephus Problem, Util. Math. 58 (2000), 161–173. Google Scholar

[12] D. Woodhouse, The Extended Josephus Problem, Rev. Mat. Hisp. Amer. (Ser. 4) 31 (1973), 207–218. Google Scholar