# Some metric on Einstein Lorentzian warped product manifolds

## Main Article Content

## Abstract

## Article Details

## References

[1] A.L. Besse, Einstein manifold, Springer-Verlag, New York, 1987. Google Scholar

[2] J.K. Beem and P.E. Ehrlich, Global Lorentzian geometry, Pure and Applied Mathematics, Vol.67, Dekker, New York, 1981. Google Scholar

[3] J.K. Beem, P.E. Ehrlich, and K.L. Easley, Global Lorentzian Geometry (2nd ed)., Marcel Dekker, Inc., New York (1996). Google Scholar

[4] J.K. Beem, P.E. Ehrlich, and Th.G. Powell, Warped product manifolds in relativity, Selected Studies (Th.M.Rassias, eds.), North-Holland, 1982, 41–56. Google Scholar

[5] R.L. Bishop and O’Neill, Manifolds if negative curvature, Trans., Am. Math. Soc. 145 (1969), 1–49. Google Scholar

[6] J. Case, Y.J. Shu, and G. Wei, Rigidity of quasi-Einstein metricc, Diff. Geo. and its applications 29 (2011), 93–100. Google Scholar

[7] E.H. Choi, Y.H. Yang, and S.Y. Lee, The nonexistence of warping functions on Riemannian warped product manifolds, J. Chungcheong Math. Soc. 24 (2) (2011),171–185. Google Scholar

[8] P.E. Ehrlich, Y.T. Jung, and S.B. Kim, Constant scalar curvatures on warped product manifolds, Tsukuba J. Math. 20 (1) (1996), 239–256. Google Scholar

[9] C. He, P.Petersen, and W. Wylie, On the classification of warped product Einstein metrics, math.DG. 24, Jan.(2011). Google Scholar

[10] C. He, P.Petersen, and W. Wylie, Uniqueness of warped product Einstein metrics and applications, math.DG.4, Feb.(2013). Google Scholar

[11] Y.T. Jung, Partial differential equations on semi-Riemmannian manifolds, J. Math. Anal. Appl. 241 (2000), 238–253. Google Scholar

[12] Y.T. Jung, S.H. Chae, and S.Y. Lee, The existence of some metrics on Riemannian warped product manifolds with fiber manifold of class (B), Korean J. Math, 23 (4) (2015), 733–740. Google Scholar

[13] Y.T. Jung, E.H. Choi, and S.Y. Lee, Nonconstant warping functions on Einstein Lorentzian warping product manifold, Honam Math. J. 39 (3) (2018), 447–456. Google Scholar

[14] Y.T. Jung, A.R. Kim, and S.Y. Lee, The existence and the completeness of some metrics on Lorentzian warped product manifolds with fiber manifold of class (B), Honam Math. J. 39 (2) (2017), 187–197. Google Scholar

[15] Y.T. Jung, Y.J. Kim, S.Y. Lee, and C.G. Shin, Scalar curvature on a warped product manifold, Korean Annals of Math. 15 (1998), 167–176. Google Scholar

[16] Y.T. Jung, Y.J. Kim, S.Y. Lee, and C.G. Shin, Partial differential equations and scalar curvature on semi-Riemannian manifolds(I), J. Korea Soc. Math. Educ. Ser. B: Pre Appl. Math. 5 (2) (1998), 115–122. Google Scholar

[17] Y.T. Jung, Y.J. Kim, S.Y. Lee, and C.G. Shin, Partial differential equations and scalar curvature on semi-Riemannian manifold(II), J. Korea Soc. Math. Educ. Ser. B: Pre Appl. Math. 6 (2) (1999), 95–101. Google Scholar

[18] Y.T. Jung, G.Y. Lee, A.R. Kim, and S.Y. Lee, The existence of warping functions on Riemannian warped product manifolds with fiber manifold of class (B), Honam Mathematical J. 36 (3) (2014), 597–603. Google Scholar

[19] Y.T. Jung, J.M. Lee, and G.Y. Lee, The completeness of some metrics on Lorentzian warped product manifolds with fiber manifold of class (B), Honam Math. J. 37 (1) (2015), 127–134. Google Scholar

[20] D.S. Kim, Einstein warped product spaces, Honam Mathematical J. 22 (1) (2000), 107–111. Google Scholar

[21] D.S. Kim, Compact Einstein warped product spaces, Trends in Mathematics, Information center for Mathematical Sciences, 5 (2) December (2002), 1–5. Google Scholar

[22] D.S. Kim and Y.H. Kim, Compact Einstein warped product spaces with nonpositive scalar curvature, proceeding of A.M.S. 131 (8) (2003), 2573–2576. Google Scholar

[23] W.Ku ̈hnel and H.B. Rademacher, Conformally Einstein product spaces, math.DG. 12, Jul.(2016). Google Scholar

[24] S.Y. Lee, Nonconstant warping functions on Einstein warped product manifolds with 2−dimensional base, Korean J. Math. 26 (1) (2018), 75–85. Google Scholar

[25] B. O’Neill, Semi-Riemannian Geometry, Academic, New York, 1983. Google Scholar

[26] T.G. Powell, Lorentzian manifolds with non-smooth metrics and warped products, ph. D. thesis, Univ. of Missouuri-Columbia (1982). Google Scholar

[27] B. U ̈nal, Multiply warped products, J. Geom. Phys. 34 (2000), 287–301. Google Scholar