Korean J. Math. Vol. 28 No. 4 (2020) pp.699-715
DOI: https://doi.org/10.11568/kjm.2020.28.4.699

Bounds of Hankel determinants for analytic function

Main Article Content

Bülent Nafi Örnek


In this paper, we give estimates of the Hankel determinant $H_{2}(1)$ in a novel class $\mathcal{N}\left( \varepsilon \right) $ of analytical functions in the unit disc. In addition, the relation between the Fekete-Szegö function $H_{2}(1)$ and the module of the angular derivative of the analytical function $p(z)$ at a boundary point $b$ of the unit disk will be given. In this association, the coefficients in the Hankel determinant $b_{2}$, $b_{3}$ and $b_{4}$ will be taken into consideration. Moreover, in a class of analytic functions on the unit disc, assuming the existence of angular limit on the boundary point, the estimations below of the modulus of angular derivative have been obtained.

Article Details


[1] T. Akyel and B. N. Ornek, Sharpened forms of the Generalized Schwarz inequality on the boundary, Proc. Indian Acad. Sci. (Math. Sci.), 126(1) (2016) 69-78. Google Scholar

[2] T. A. Azeroglu and B. N. Örnek, ¼ A re…ned Schwarz inequality on the boundary, Complex Variab. Elliptic Equa. 58 (2013) 571-577. Google Scholar

[3] H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010) 770-785. Google Scholar

[4] V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122 (2004) 3623-3629. Google Scholar

[5] G. M. Golusin, Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966. Google Scholar

[6] I. S. Jack, Functions starlike and convex of order . J. London Math. Soc. 3 (1971) 469-474. Google Scholar

[7] M. Mateljevi´ c, Rigidity of holomorphic mappings & Schwarz and Jack lemma, DOI:10.13140/RG.2.2.34140.90249, In press. Google Scholar

[8] P. R. Mercer, Sharpened Versions of the Schwarz Lemma, Journal of Mathematical Analysis and Applications 205 (1997) 508-511. Google Scholar

[9] P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski’s lemma, Journal of Classical Analysis 12 (2018) 93-97. Google Scholar

[10] P. R. Mercer, An improved Schwarz Lemma at the boundary, Open Mathematics 16 (2018) 1140-1144. Google Scholar

[11] R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000) 3513-3517. Google Scholar

[12] B. N. Örnek, Sharpened forms of analytic functions concerned with Hankel determinant, Korean J. Math. 27(4) (2019), 1027-1041. Google Scholar

[13] B. N. Örnek and T. Düzenli, Boundary Analysis for the Derivative of Driving Point Impedance Functions, IEEE Transactions on Circuits and Systems II: Express Briefs 65(9) (2018) 1149-1153. Google Scholar

[14] B. N. Örnek and T. Düzenli, On Boundary Analysis for Derivative of Driving Point Impedance Functions and Its Circuit Applications, IET Circuits, Systems and Devices, 13(2) (2019), 145-152. Google Scholar

[15] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin. 1992. Google Scholar

[16] Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14(1967), 108-112. Google Scholar

[17] J. Sokol and D. K. Thomas, The second Hankel determinant for alpha-convex functions, Lithuanian Mathematical Journal, DOI 10.1007/s10986-018-9397-0, In press. Google Scholar

[18] G. Szegö and M. Fekete, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. Lond. Math. Soc. 2(1933) 85-89. Google Scholar

[19] D. K. Thomas and J. W. Noonan, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976) 337-346. Google Scholar